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Propositions

1. Genetic tolerance indicates parts of a protein that are not important for function. (This thesis)

2. Most disease-causing missense mutations are found in protein domains. (This thesis)

3. Damaging missense mutations cluster in the 3D protein structure and can provide insights 

into disease-mechanisms. (This thesis)

4. Missense mutations of unknown clinical significance that cluster are damaging. (This thesis)

5. Damaging missense mutations predict damaging effects at equivalent locations in other 

proteins. (This thesis)

6. Genomic data growth shall uncover increasingly complex concepts that will require easily-

accessible and user-friendly interfaces. (This thesis)

7. Identification of increasingly rare genetic disorders will require increasingly large, 

international, and interdisciplinary collaborations. (This thesis)

8. Genetic tolerance will take decades to reach saturation, if ever. Meta-domains can help 

reach this saturation sooner. (This thesis)

9. “As ge niks makt, makte ok niks kapot” //  “If you never attempt anything, you will never 

break anything”. (Oma Lies van de Wiel-van Moorsel)

10. “Life is too short to drink bad beer”. (Derivative of a quote by Johann Wolfgang von Goethe)
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“We sift over our fingers the first grains of this great outpouring of information and 

say to ourselves that the world be helped by it. The Atlas is one small link in the chain 

from biochemistry and mathematics to sociology and medicine.”

–

Margaret Oakley Dayhoff (1968)  
on the first Atlas of Protein Sequence and Structure
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“Bilbo: Can you promise that I will come back?  

Gandalf: No. And if you do... you will not be the same.”

–

The Hobbit: An Unexpected Journey (2012) 
conversation between Bildo and Gandalf  
before Bilbo embarks on this adventure
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Proteins are fascinating, large, complex molecular machines that have developed 

over millions of years of evolution. Without proteins, life as we know it would not 

exist. Proteins are the work horses of the body. Antibodies recognize and bind 

to viruses or bacteria to protect the host. Enzymes trigger chemical reactions 

and assist in chemical processes. Messengers signal between cells. Structural 

components provide structural integrity and support for cells. Transport proteins 

assist in carrying chemical elements and molecules in and to other cells. Proteins 

are responsible for the structure, function, and regulation of all critical processes 

in every form of life. Life, however, is faced with constant selective pressures. 

These selective pressures are the drivers of natural selection. Given enough time 

and iterations, they lead to diversification of species in a process that is called 

evolution.1 Evolution on a molecular level occurs in the form of mutations that 

could have a structurally altering effect on proteins. Protein structural changes 

can directly affect the protein function. These changes are damaging when they 

drastically disrupt the protein function and can result in reduced fitness, disease, 

or, death of the host. Selective pressures favour changes that lead to higher fitness. 

Most variations are neutral to fitness,2 which resulted in the evolution of many 

‘optimally enough’ proteins suited for a certain task. Identifying which changes 

are neutral and which are damaging is one of the key challenges in modern-day 

genetics and also the main motivation for this thesis.

The completion of the Human Genome Project in 2003 gave a boost to the now 

approximately 22,300 protein-coding genes that have been identified in humans.3–5 

In the almost two decades that followed, a massive accumulation of human genetic 

data have become publicly available.6 These genetic data have allowed scientists 

to look at a fine scale of possible variations to protein-coding genes within a single 

species. Of all disease-causing genetic variation discovered to date, 58% alters or 

impairs the protein structure.7 The accumulation of genetic information from a 

multitude of human individuals have led to notions of ‘tolerated genetic variation’: 

variation that occurs in high-frequency in the general population and are therefore 

likely harmless.8–11 

Despite these vast resources, it remains a challenge to predict if genetic variation 

is damaging. Small changes in the genome can have a major effect on a protein’s 

structure and thus function. To begin to understand why, it is crucial to first learn 

how proteins are constructed.
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What makes a protein?
Proteins consist of hundreds to thousands of smaller units called amino acids. 

All amino acids contain an amino (NH2) group and a carboxyl (COOH) group. 

The amino group can bind via a peptide bond to the carboxyl group of another 

amino acid to form a dipeptide.  To form a protein, multiple amino acids are 

chained together in a polypeptide. The first residue in a polypeptide is called the 

N-Terminus, and the last residue is called the C-Terminus. When represented 

in the form of letters a polypeptide is called a protein sequence, or the primary 

protein structure (Figure 1).12

There are 22 different proteinogenic amino acids, each commonly denoted by a 

unique 1-, or, 3-letter combination (A/Ala, C/Cys, D/Asp, E/Glu, F/Phe, G/Gly, H/

His, I/Ile, K/Lys, L/Leu, M/Met, N/Asn, O/Pyl, P/Pro, Q/Glu, R/Arg, S/Ser, T/Thr, U/

Sec, V/Val, W/Trp, Y/Tyr). Every amino acid has the same neutral backbone and a 

characteristic side-chain (or R-group). The side-chain determines the amino acid 

type and has a unique set of different structural and chemical properties.

The importance of side-chains

The side-chains determine the amino acid type. The properties of side-chains 

shape the protein, and these properties can be of structural or chemical nature. 

These properties play an especially important role in the folding of the primary 

protein structure into a tertiary structure. Side-chain features that are particularly 

important for the structural formation or function of the protein are the size, 

electrical charge, presence of a reactive sulphur atom, ability to form salt bridges, 

overall atomic rigidity, and, hydrophobicity.
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Protein folding is the process in which a polypeptide chain conforms into a 

3-dimensional molecule: the tertiary structure. The tertiary structure shape is 

determined by the environment and the chemical and structural properties of 

amino acids in the polypeptide. The tertiary protein structure consists of three 

generic patterns, α-helices, β-sheets, and, loops. These generic patterns are called 

secondary protein structures (Figure 2A). The type of secondary protein structure 

is influenced by the forming of hydrogen bonds between amino acids. α-helices 

are right-hand-coiled structural conformations that consist of a multitude of 

repetitive patterns: four amino acids, wherein each first and last residue forms a 

hydrogen bond using their backbone. β-sheets consists repeated stretched of 3 to 

10 amino acids, called β-strands, that are interconnected via hydrogen bonds and 

assisted by loops and turns.

The tertiary protein structure (Figure 2B) is the native conformation of a single 

polypeptide chain. If multiple polypeptide chains are involved to form a shared 

conformation, it is called a quaternary protein structure (Figure 2C). In the 

components of the quaternary protein structure are not held together by covalent 

bonds. Instead they are bound by hydrophobicity, salt bridges, or, disulphide 

bridges, to name a few. The forming of a quaternary protein structure is also 

directly influenced by the side-chain properties of the amino acids. Quaternary 

protein structures that are formed by multiple proteins are commonly referred 

to as polymers, with 1 = monomer, 2 = dimer, 3 = trimer, etc. And, in the case of 

dimers or larger polymers, homo- or hetero- prefixes indicates if the quaternary 

structure is made from identical (homo) or different (hetero) polypeptides. In 

Figure 2C an example of a homo-tetrameric protein structure is provided. In this 

tetrameric conformation, four identical protein structures join together to form 

the pore-like structure necessary for channelling K+ ions. All of the structural 

examples in Figure 2 are taken from a mammalian voltage-gated K+ channel in 

an inactivated state (PDB: 5WIE13). This particular protein structure was used to 

model and analyse mutation hotspots in Chapter 6. 



Chapter 1  

18

Fi
gu

re
 2

.  
Pa

rt
s 

fr
om

 th
e 

sa
m

e 
cr

ys
ta

l s
tr

uc
tu

re
 (P

D
B:

 5
W

IE
).13

 (I
m

ag
es

 w
er

e 
cr

ea
te

d 
us

in
g 

YA
SA

RA
14

 m
od

el
in

g 
so

ftw
ar

e)

A
.. 

 
Th

e 
st

ru
ct

ur
es

 o
n 

th
e 

le
ft

 a
re

 r
ep

re
se

nt
ati

on
s 

of
 a

n 
α-

he
lix

 (
p.

Pr
o1

65
-p

.G
ly

18
0 

in
 P

D
B:

 5
W

IE
-A

). 
Th

e 
st

ru
ct

ur
es

 o
n 

th
e 

rig
ht

 a
re

 r
ep

re
se

nt
ati

on
s 

of
 a

 β
-s

he
et

s 
(p

.T
yr

15
1-

p.
A

sn
15

 a
nd

 p
.M

et
18

1-
p.

A
rg

18
9 

in
 P

D
B:

5W
IE

-A
). 

Th
e 

to
p 

ar
e 

re
pr

es
en

ta
te

d 
as

 a
to

m
ic

 s
tic

k 
(c

ar
bo

n:
 li

gh
t 

bl
ue

, 
ni

tr
og

en
: 

da
rk

 b
lu

e,
 s

ul
ph

ur
: 

gr
ee

n,
 

ox
yg

en
: r

ed
, h

yd
ro

ge
n 

bo
nd

s:
 y

el
lo

w
 d

ott
ed

 li
ne

s)
. T

he
 b

ott
om

 r
ep

re
se

nt
ati

on
s 

ar
e 

rib
bo

n 
ca

rt
oo

ns
, w

ith
 b

lu
e 

rib
bo

ns
 a

s 
α-

he
lic

es
 a

nd
 r

ed
 r

ib
bo

ns
 t

he
 β

-s
tr

an
ds

 
th

at
 fo

rm
 th

e 
β-

sh
ee

t.
 



General introduction

1

19   

B. 
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plete solved crystal structure of a m
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alian voltage-gated K+ channel in an inactivated state (chain A in PD
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How does the genome relate to the protein structure?
The genome is the collection of all genetic information necessary for the building, 

maintaining, and, reproduction of organisms. It is passed from parents to offspring. 

In cellular organisms, like humans, every cell has a copy of the genome. The 

genome is contained in multiple large molecules that are called chromosomes. 

The chromosomes are composed of Deoxyribonucleic acid (DNA) molecules. DNA 

consists of even smaller molecules called nucleotides which are chained together 

in the shape of a double helix. There are four different nucleotides (A, C, T, G) 

and each nucleotide is paired with another nucleotide to form base pairs that 

constitute the double helix shape.15 Similar to the primary protein structure, 

where the sequence consists of amino acids, the DNA can be represented as 

a sequence of letters corresponding to the nucleotides. The human genome 

consists of 23 chromosome pairs, totalling to 46 chromosomes. Half of these 

are inherited from the father and the other half from the mother. Combined, the 

chromosomes contain approximately 6 billion base pairs. Potentially, a change 

to any one of these 6 billion base pairs can influence the entire organism. In 

the human genome most of the essential information is located in regions that 

are called genes. A recent assessment of the human genome identified 60,669 

different genes, of which 32.9% are protein-coding, 42.1% non-coding RNA genes, 

and, 24.3% pseudogenes.16 The protein-coding genes make up roughly 1-2% of 

the entire genome.3 They encode the amino acid arrangement of every protein in 

human cells.

Protein-coding genes are blueprints

Protein-coding genes describe how to construct a primary protein structure via 

sets of instructions. These genes ensure the consistency of how proteins are 

composed throughout all cells of an organism. The genomic structure of protein-

coding genes in eukaryotes consists of regulatory sequences and the open reading 

frame. The regulatory sequences consist of enhancers, silencers, promoters 

and the 5’ and 3’ untranslated regions (UTR). These parts of the protein-coding 

genes primarily regulate the expression level of proteins. Additionally, they 

contain instructions for isoforms in the form of transcripts. These isoforms are 

alternative protein sequence conformations. According to GENCODE there are 

84,068 possible transcripts for the 19,959 curated human protein-coding genes 

(GENCODE Release Version 34).16 In theory, these transcripts could each result 
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in a different protein sequence. However, most differences between transcripts 

are in the non-coding UTR regions and will therefore not affect the final protein 

sequence.17 

The open reading frame is composed of regions called introns and exons. Introns 

are non-coding and important for isoform formation and the protein expression 

level. Exons code for parts of the amino acid sequence via triplets of nucleotides 

called codons. Each codon directly correspond to one of 20 amino acids or indicate 

the termination of the coding region via a ‘stop-codon’.18 The amino acid sequence 

is constructed from a protein-coding gene with three steps called “central dogma 

of molecular biology”. Protein folding could be seen as the final step (Figure 3):19

1. Transcription: The 5’UTR, the introns and exons and 3’UTR are transcribed 

into precursor messenger RNA (pre-mRNA). In this step DNA, with the 

help of ribosomes, is copied into an RNA representation.

2. Post-transcriptional modification: The intronic regions are removed from 

the pre-mRNA, this way the exons form the complete, untranslated, 

protein sequence in RNA, which is called mature messenger RNA (mRNA). 

3. Translation: the mRNA is translated into a chain of amino acids (a 

polypeptide). 

4. Protein folding: The polypeptide chain conforms into the tertiary protein 

structure.

How can changes in the genome affect proteins?
Genetic variations are alterations to the nucleotide mark-up of the genome. These 

variations can affect only one nucleotide (e.g. transitions), one or a stretch of 

nucleotides (e.g. insertions and deletions also called indels, or substitutions), or 

affects a region of nucleotides (e.g. structural variations). Structural variations can 

be deletions, insertions, inversions, duplications, or, copy number variations. If 

any of these variations occur within the region of a protein-coding gene, they may 

have a direct effect on the protein.
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Figure 3.  
The genom
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Most of the work in this thesis is focused on single nucleotide variants (SNVs) that 

occur within protein-coding regions. There again is specific jargon for different 

SNVs. If an indel SNV in the coding region affects the reading frame of codons 

it is called a frameshift variation, and, can result in an entirely different protein 

sequence. Substitution SNVs can have multiple effects on the protein. If the 

substitution does not change the amino acid translation it is called synonymous, 

otherwise it is called missense. When the translation is changed to a stop codon, it 

is called nonsense or stop-gained (Table 1). Nonsense and missense variants are 

also referred to as non-synonymous variations. 

Table 1. Example of single nucleotide variants in codons and the effect on encoding. (Structural 
formula representations courtesy of NEUROtiker, adapted from Wikimedia and are licensed under 
public domain).

How genetic variations in protein-coding genes can result in disease 

The amino acid composition of proteins is encoded in protein-coding genes, and, 

therefore, the genetic code plays an important role in dictating the composition of 

a protein. Genetic variations may affect proteins in a positive, neutral, or, negative 

way. Positive and negative changes can alter the protein in a loss-of-function 

(LoF) or a gain-of-function (GoF) effect. A variant with a negative effect is called 

damaging or deleterious. If the damaging variant leads to disease, it is called a 

pathogenic or disease-causing mutation. 

Nonsense variants generally have the largest effect on the protein structure. 

These variants induce the termination of the open reading frame. The result 

may be a partial structure, that is often ‘cleaned up’ by a process called nonsense 

mediated decay (NMD). If the partial protein is cleaned up by NMD there is no 

protein expressed at all.20 This can affect the protein expression level also called 
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the dosage. Disease may occur due to this lack of dosage, and, if this is the 

case, the mechanism of disease is called haploinsufficiency (HI). The effect of a 

missense variant greatly depends on the location of that variant in the protein 

structure and the difference between the original amino acid residue and the 

one it changes into. If the residue introduced disrupts the folding of the protein 

structure, the structure could also be cleaned up in the NMD process. Therefore, 

missense variants may trigger a HI disease-mechanism. Alternatively, damaging 

missense variants that do not disrupt folding may still disrupt the function, or 

functional sites, of the protein. If this leads to disease, the disease-mechanism 

is called non-haploinsufficiency (NHI). Determining if variants are damaging, and 

how, can require the need for functional testing and replications studies, and, 

therefore is often a laborious task. In Chapter 4 and 6 we show that clustering of 

missense variants found in patient with neurodevelopmental disorders indicate a 

likely disease-mechanisms and help identify candidate disease-genes. 

Identifying genetic variations in a diagnostic setting

In the two decades following the completion of the Human Genome Project, 

the technology involved in analysing the human genome advanced immensely. 

The Human Genome Project provided the first version of the human reference 

genome.3,4 The reference genome can be used to identify genetic variation. Genetic 

variations are differences in nucleotide composition of a patient compared to the 

reference genome. To find these differences, whole exome sequencing (WES)21 or 

whole genome sequencing (WGS)22 can be used. A patent undergoing WES or WGS 

will result in many small genome sequence pieces that are called reads. These 

reads are then mapped to the reference genome. The total number of mapped 

reads at the same location indicates the quality and certainty of any genetic 

variants that are identified at that location. Nowadays, whole exome sequencing 

and whole genome sequencing are part of routine diagnostic protocols.23,24 Since 

the first version of the human reference genome, disease-gene associations have 

increased by a four-fold.25

The first step in a present-day genetic diagnostic procedure is to identify all 

genetic variation in a patient. The second step is variant effect prediction. In a 

diagnostic setting the goal for variant effect prediction is to find the variant, or 

variants, that explain the phenotype of the patient. Typically each sequenced 
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individual has between 20,000 and 26,000 genetic variants in the coding 

regions, which can be reduced to 150-500 candidate variants by various filtering 

strategies.26 This commonly includes considering variants that alter the protein-

coding region, are rarely encountered in the general population, are located in a 

previously disease-associated genomic regions, or, are present in genes that have 

a specific biological role. Computer-aided variant effect predictors have evolved 

over the last two decades as well. Deleteriousness predictors, such as SIFT27, 

Polyphen-228 and CADD29, make use of an aggregate of information resources 

and proven metrics to determine the likelihood of a variant to have a deleterious 

effect. HOPE30 attempts to explain the functional effect of a missense variant in the 

protein structure. Despite these predictors, it remains challenging to accurately 

diagnose patients. Another way to gather evidence for diagnosis is to combine 

genetic data from patients. In Chapter 5 we combined genetic data from 31,058 

patients with developmental disorders. By combining this data, we found 285 

genes significantly enriched with rare mutations. Of these, 28 genes were not yet 

associated to developmental disorders. 

What can we learn from evolution?
The selective pressures that drive evolution induce changes in the genome. These 

changes may have an effect on the protein structure and function. Given enough 

iterations these changes enable diversification into different species.31 The effects 

of evolutionary–driven genetic variations on genomes are an active topic for 

scientific studies. Changes that occurred only a short while ago, or hundreds, or 

millions of years ago can be traced back by sequence analysis. There are many 

ways to approach this resource of information. For example, these data help 

estimate how, and when exactly, species diversified by constructing genome-

based phylogenetic trees.32,33 From a shorter time-perspective these data help in 

uncovering history of human geological migration patterns.34 Or these data help 

explain why certain African populations carry a disease-enabling copy of the gene 

that causes cycle cell anaemia, as it offers protection against malaria.35

Genetic changes can be damaging, neutral, or, beneficial. There are many possible 

exceptions and it is difficult to identify which is which. The genome is so complex 

that not every change will have an everlasting negative or beneficial effect for the 

following generations. Instead most changes are expected to be neutral.2 The most 
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common way to predict likely damaging changes is by evolutionary conservation.36 

Evolutionary conservation can be computed by comparing lack of changes 

between highly similar proteins from different species.37 Popular pathogenicity 

predictors make use of evolutionary conservation (e.g. SIFT27, Polyphen-228 and 

CADD29). The underlying assumption of evolutionary conservation is that there 

are a great number of iterations needed to diversify into different species. If the 

residues at equivalent proteins rarely change during this diversification, then they 

are probably important. On the other hand, if these residues change often, they 

are likely neutral.

Highly similar sequences are necessary to compute evolutionary conservation. The 

de facto standard to find analogy in sequences is the basic local alignment search 

tool (BLAST).38 BLAST requires an input sequence and then scores sequences 

based on the similarity to that input sequence. Analogy is often an indication 

of homology. Similar sequences (>25% sequence identity) can indicate a shared 

evolutionary ancestor and are called homologous.37 Homologous relationships can 

accommodate the transfer of information, and help elucidate important residues 

and regions within sequences. Transfer of information can be achieved via 

sequence alignment or multiple sequence alignment (MSA). Sequence alignments 

are generally made on similar sequences via Clustal39. MSA allows nucleotides or 

amino acids to be aligned to corresponding positions (Figure 4A). In homologous 

proteins, mutations at corresponding locations across an MSA are known to result 

in similar effects.40

Evolutionary conservation can be calculated by considering the amount of different 

amino acids encountered. This is computed per column in an MSA, and preferably 

calculated over homologous protein sequences from evolutionary distant species. 

The result per position can be expressed as relative entropy37. Using relative 

entropy, in figure 4B, the letter-size indicates how conserved residues are based 

on the MSA from Figure 4A.
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B. 

The Pfam
 H

M
M

 sequence logo generated via the Skylign tool 42 for the EG
F-like dom

ain (PF00008). The height of each residue is based on the 
inverted relative entropy for that position. The height indicates how

 conserved each residue is in m
ultiple sequence alignm

ent from
 4A. In this 

exam
ple the big C’s correspond to highly conserved cysteines. The thin red vertical lines in the sequence logo denote regions prone to contain 

deletions and the orange lines are regions prone to insertions.
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Protein domains and homology

Protein structure is more evolutionary conserved than sequence.44 The protein 

structure determines the function. Protein functions rely on elementary functional 

elements. These elements are for example the binding of an ion, voltage-gating, 

a specific structural shape, etc. These elementary functions have been optimized 

over the course of evolution. When these elements have a similar protein 

structure and/or sequence they are called protein domains. Protein domains can 

be detected from sequences by locating evolutionary conserved regions. When 

these evolutionary conserved regions have a similar sequence composition and/

or structure, then these often have the same function. When these regions are 

homologous, and can be located in multiple proteins, they can be part of a protein 

domain family.

The example in Figure 4 is an EGF-like domain (PF00008) that we analysed in-

depth in Chapter 2 of this thesis. This is a structural domain and most parts in 

this protein domain, from a sequence perspective, are variable (Figure 4B). The 

large C’s, however, indicate conserved cysteines. The structural importance of 

the conserved cysteines can be seen in Figure 4C as they form rigid disulphide 

bridges. In EGF-like domains, any changes to the conserved cysteines will cause 

loss of a stabilizing disulphide bond necessary for the structure of the domain.45 

Understanding the human genome from an evolutionary perspective 

The UniProt Knowledgebase (UniProtKB) currently contains 37,670 proteomes 

of which 1,832 are part of the Swiss-Prot collection that have been reviewed by 

experts (release 2020_03).46 Evolutionary conservation between-species can be 

computed from these data. This helps to discover homologous genes, proteins 

and protein domains. Most proteomes contained in the UniProtKB result from a 

single to a few sequencing samples. It will require considerably more sequencing 

efforts to analyse the within-species variability for each of these proteomes. 

For humans, however, sequence data is becoming more readily available. This 

is gradually leading to a more accurate estimation of within-human variation. 

Patients and controls involved in genetic studies can consent to their genetic 

data be used for scientific purposes. Contributing to the formation of large 

population-size catalogues of genetic variation.47–51 The largest dataset to date is 

gnomAD, representing 141,456 individuals.51 From these datasets, the frequency 
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of rare and commonly encountered genetic variations can be determined. These 

measurements have led to the notion of genetic tolerance. Genetic tolerance is a 

measurement from a within-species perspective, and, has a likeness to evolutionary 

conservation. However, it is different in that evolutionary conservation is based 

mostly on single sequence comparisons between related species. In genetic 

tolerance there are hundreds of thousands of sequences that we can compare 

from a single species. This abundance of data can uncover much finer details 

than ‘conserved’ versus ‘variable’. Genetic tolerance can indicate positions and 

regions that are highly variable or not variable at all. Genetic tolerance can help to 

determine the likely pathogenicity of genetic variants.26,52

In recent years, metrics such as RVIS8, subRVIS9 and pLI50 have been developed that 

provide an indication of potential deleteriousness of variants. Perhaps inspired by 

evolutionary conservation, these methods use the absence of population-based 

variation to determine variant deleteriousness. Genes vary in their tolerance to 

variation and this can be used to determine their essentiality.8 Regions within 

genes vary in tolerance to variation as well. Regions that are intolerant to variation 

correspond to important parts of the gene and disease variants are more likely 

found within these regions.9,10 For example, Figure 5 depicts a ‘tolerance landscape’ 

for the gene LMX1B created by our webserver MetaDome (Chapter 3). The regions 

that are intolerant to missense variants correspond to the protein domain regions 

and where disease-causing variants are encountered. 
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Figure 5.  
 

Visualization of Tolerance Landscape of LM
X1B (transcript: EN

ST00000355497.5, protein: O
60663-3) created by M

etaD
om

e
53 (accessed July 23 2020). 

Tolerant regions are coloured blue and intolerant regions red. The light-green blocks are LIM
 dom

ains (PF00412, p.56-p.110 and p.115-p.172), the 
dark-green a H

om
eobox dom

ain (PF00046, p.220-p.276). The 12 red bars indicate locations w
here pathogenic variants are recorded in ClinVar54, 

corresponding to 6 m
issense (p.Cys59Phe, p.Cys118Phe, p.Arg223G

ln, p.Arg246G
ln, p.Arg261Cys, p.Asn269Lys) and 7 nonsense (p.Trp76*, p.G

ln82*, 
p.Tyr102*, p.Arg221*, p.Arg231*, p.Arg246*, p.Arg249*). In this visualization, tolerance is based on a m

issense over synonym
ous ratio, using the 

genetic variation from
 gnom

AD
.51
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Scope of this thesis
In this thesis I have combined structural biology and human genetics. I integrate 

protein information with publicly available human genetic variation. This 

combination allowed validation of the following hypotheses:

Hypothesis I: The parts of a protein that are tolerant to population-based 

genetic variation are not important for protein function.

Hypothesis II: Genetic variants that are damaging to a part of a protein 

can be used to predict damaging effects in highly similar parts in other 

proteins.

Investigating these hypotheses led to integrate human genetic data with protein 

domain and protein structure information. This combination resulted in the 

following chapters.

Meta-domains and the MetaDome web server

Integrating human genome data with homologous protein domains resulted in 

meta-domains (Chapter 2). Meta-domains allow transfer of information between 

equivalent residues in different protein domains. This transfer of information helps 

interpret genetic variation. The meta-domain concept has been implemented in 

the MetaDome web server (Chapter 3).

Clustering of de novo missense mutations suggest disease mechanisms

De novo mutations (DNMs) are rare genetic variants. In patients with developmental 

disorders (DD), DNMs are the likely cause. We identified that missense DNMs 

clustered in 15 genes in publicly available DD patient data (Chapter 4). Of these, 

3 genes were novel DD-associations. Analysis of these clusters in the protein 3D 

structure suggest an N-HI disease-mechanism.

Deleterious de novo missense mutations locate to protein domains

We formed the largest cohort to date of DNMs identified in 31,058 DD-patients 

(Chapter 5). We found 285 genes significantly enriched with DNMs. Of these, 28 

genes were novel DD-associations. Specifically, I showed that missense DNMs are 

more likely located in protein domains. This is not the case for stop-gained and 

synonymous DNMs. Furthermore, specific protein domain families are enriched 

with missense DNMs identified in DD-associated genes.
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Gene DD-association based on a single de novo mutation

I combined meta-domains (Chapter 2) with the insights that missense DNM 

clusters indicate disease-mechanisms (Chapter 4), and, that protein domains 

are enriched with missense DNMs (Chapter 5). This led to the identification 

of missense DNM hotspots in meta-domains (Chapter 6). The hotspot DNMs 

were located in 25 genes. Analysis of these hotspots in the protein 3D structure 

confirmed deleteriousness. Six of these genes are novel candidate DD-associations 

based on a single DNM in a hotspot.

In Chapter 7 I discuss the limitations and implications of this thesis.
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Abstract
Whole exomes of patients with a genetic disorder are nowadays routinely 

sequenced but interpretation of the identified genetic variants remains a major 

challenge. The increased availability of population-based human genetic variation 

has given rise to measures of genetic tolerance that have been used, for example, 

to predict disease-causing genes in neurodevelopmental disorders. Here, we 

investigated whether combining variant information from homologous protein 

domains can improve variant interpretation. For this purpose, we developed a 

framework that maps population variation and known pathogenic mutations onto 

2,750 “meta-domains.” These meta-domains consist of 30,853 homologous Pfam 

protein domain instances that cover 36% of all human protein coding sequences. 

We find that genetic tolerance is consistent across protein domain homologues, 

and that patterns of genetic tolerance faithfully mimic patterns of evolutionary 

conservation. Furthermore, for a significant fraction (68%) of the meta-domains 

high-frequency population variation re-occurs at the same positions across domain 

homologues more often than expected. In addition, we observe that the presence 

of pathogenic missense variants at an aligned homologous domain position is 

often paired with the absence of population variation and vice versa. The use of 

these meta-domains can improve the interpretation of genetic variation.
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Introduction
Next generation sequencing technologies now allow for the comprehensive 

identification of all genetic variation in an individual, and exome and genome 

sequencing are increasingly being used in clinical care to provide a diagnosis for 

patients with a genetic disorder.23,24 The interpretation of the large number of 

genetic variants present in the exome or genome of a patient is now the major 

remaining challenge.26 Filtering strategies that reduce the number of candidate 

disease-causing variants make use of information such as the occurrence of 

variants in the normal and in the diseased population, knowledge about the role 

of genes in disease, and the predicted effect of specific mutations.30 Algorithms 

such as Polyphen-228 and CADD29 are able to predict the pathogenicity of individual 

variants, but leave room for improvement, especially within a clinical context.55–57 

Other methods have used population-wide genetic variation from healthy 

individuals that is available in large public databases such as the NHLBI Exome 

Sequencing Project (ESP),58 and the Exome Aggregation Consortium (ExAC)50 to 

construct metrics that estimate the genetic tolerance of a gene. Various studies have 

shown that genetic intolerance of a gene is a strong indicator for a role in severe 

human diseases such as intellectual disability and other neurodevelopmental 

disorders.8,59 Metrics such as RVIS8 and pLI50 are now being used in conjunction 

with variant pathogenicity prediction algorithms to improve the interpretation of 

variants of unknown significance in patients suffering from these disorders.

The continuous growth of catalogues of human genetic variation has made it 

feasible to investigate genetic tolerance at a finer scale, such as for individual 

exons of a gene or even domains of a protein. This was done, for example, by 

Gussow et al.9 who developed subRVIS and found that tolerance within a gene 

varies, and that specific protein domain coding parts of a gene are sometimes 

much more intolerant than the whole gene. Moreover, the authors found that 

intolerance to genetic variation within genic sub-regions significantly correlates 

with reported pathogenic mutations. These patterns of region-specific variation in 

genetic tolerance were also used by Ge et al.10 to detect missense-depleted regions 

to confirm the pathogenicity of individual variants of unknown significance. 

Since its introduction, one of the applications of BLAST38 was to identify 

homologous proteins. Mutations at corresponding locations in these homologues 

were found to result in similar effects on protein stability.40 Protein domains are 
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especially interesting as they have homologous relationships spanning many 

proteins. Because of this, protein domains can also have many homologues 

that occur within the same species. An example of a framework that annotates 

protein domains to proteins is Pfam.41 The Pfam database is a large collection of 

protein domain families represented by curated multiple sequence alignments 

(MSAs) and a hidden Markov model (HMM). In recent work Miller et al. combined 

mutation information from different protein domain homologues to identify 

mutation hotspots in cancer, and Melloni et al. used a similar approach to identify 

cancer driver mutations.60,61 We hypothesized that genetic tolerance found in 

the regions coding for protein domains, may be consistent across other within-

human homologues of that domain and that therefore interpretation of variants 

in a protein domain can be improved by aggregating population variation over 

homologous protein domains.

Materials and Methods

Mapping of human genomic variation to Pfam domains

We performed a Protein-Protein BLAST 2.2.31+62 for each of the longest 

translations for all 18,651 human protein-coding genes in the GENCODE Basic set 

release 19 GRCh37.p1363 to canonical and isoform human protein sequences in 

UniProtKB/Swiss-Prot Release 2016_09 (Swiss-Prot).64 We then selected the top 

BLAST result with 100% identity to the query sequence and a BLAST E-value of 0.01 

or less. Pfam-A 30.041 protein domains in the matched Swiss-Prot sequences were 

annotated using InterProScan 5.20-59.0.65 ClustalW2 v2.139 was used to create 

pair-wise alignments between the gene translations and Swiss-Prot sequences. 

The resulting alignment was then used to map genomic variation onto residues in 

Swiss-Prot protein sequences.

Datasets of population genetic variation and disease-causing 
missense variants

Population variation was obtained from the Exome Aggregation Consortium 

(ExAC) v0.3.150 by selecting all synonymous and missense variants with the PASS 

filter criteria. For the creation of meta-domains we considered missense variants 

from ExAC with an allele frequency > 0.1%. For validation purposes we also used 

two additional sets of ExAC missense variants having >0.5% and >0.05% allele 

frequency.
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We selected a set of disease-causing missense variants from the Human Gene 

Mutation Database (HGMD) 2016.266 that have disease-causing (DM) status, which 

were subsequently filtered by removing all variants that are identical to PASS 

variants in ExAC with >0.1% allele frequency. This filtering reduced the original set 

of HGMD DM missense variants by 0.17%. In addition, we used missense variants 

from ClinVar (downloaded for GRCh37 on 2017-06-15), with disease-causing 

(Pathogenic) status, as an additional validation to HGMD DM variants. The filtering 

of identical PASS variants in ExAC with >0.1% allele frequency, that was used for 

the HGMD DM set, was applied to this set as well.

Aggregation of genetic variation into meta-domains

In order to aggregate genetic information over protein domain homologues we 

considered each Pfam identifier found in more than one gene as a within-human 

homologue. In this study, when we mention homologous protein domains, or 

domain homologues, we refer to Pfam protein domains that are homologous in 

the protein-coding regions of the human genome. For each domain found this 

way, we retrieved the Pfam HMM and the domain protein sequence. We used all 

the domain sequences that had the same Pfam identifier, together with the Pfam 

HMM, to generate a MSA using the HMMER 3.1b2 tool.67 We used our mapping 

to combine genetic variants on positions that were aligned to the same Pfam 

domain positions. Variations on Swiss-Prot residues in insertions with respect to 

the Pfam domain were ignored. The percentage of homologous domains aligned 

to a position (MSA coverage) was determined based on the number of gaps with 

respect to the Pfam domain.

Gene Ontology Biological Process enrichment analysis in protein 
domains

Gene Ontology Biological Process (GOBP) enrichment analysis was performed 

using the R package dcGOR 1.0.6.68

Computing genetic tolerance via the missense over synonymous 
ratio

We use the non-synonymous over synonymous ratio, or dN/dS score, to quantify 

genetic tolerance in genes and domains. In our setting this score is based on 

the single nucleotide missense and synonymous variants (SNVs) from ExAC in a 
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protein-coding region (missenseobs and synonymousobs). This score was corrected for 

the sequence composition of the protein coding region based on the total possible 

missense and synonymous SNVs (missensebg and synonymousbg):

Consistency of genetic tolerance across protein domain homologues

We calculated the Median absolute deviation:  

|) to measure whether genetic 

tolerance scores are consistent across homologous domains. For each domain 

occurrence ‘xi’ of a homologous domain group ‘x’ we calculate the difference of  

dN/dS score to the median. The median of all these differences is then computed as 

the MAD. The minimal and optimal value of the MAD score is zero, meaning that no 

score deviates from the median. To test whether the MAD score per homologous 

domain group is significantly different from another randomly selected group 

of homologues, we permuted the MAD scores for each homologous domain 

group using the dN/dS score of each member in that group and comparing it to 

the median dN/dS of another homologous domain group that we selected via 

the numpy function random.permutation in Python. This permutation test was 

repeated 10,000 times.

Evolutionary conservation and population variability

We measured sequence conservation via the relative entropy per position37 in a 

multiple sequence alignment (MSA) to compute the evolutionary conservation 

and population variability: . Here ‘j’ is an aligned 

position, ‘R’ is the amino acid residue type, ‘ ’ is the frequency of how often 

a residue of type ‘R’ occurs at position ‘j’. The relative entropy ranges from 0.0 

to 1.0 for conserved to variable. We used the Pfam-A full alignment for each 

Pfam domain to compute evolutionary conservation. We used our mappings to 

assess population variability by extracting missense and synonymous variants 

and their respective allele frequencies from ExAC to compute the ‘ ’ variable. 

To achieve a sufficiently high MSA resolution and certainty of correct entropy we 

only con-sidered positions for computing the relative entropy that had at least 25 

sequences with 80% MSA coverage.
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Quantifying patterns of missense variants in meta-domains

We created a metric to quantify how often a consensus position in a meta-

domain contains identical missense variants (i.e. two or more homologous 

domains wherein the aligned residues both are identical in reference and 

alternative amino acid residues). We call this metric the characteristic missense 

variant score: . Here ‘Lx’ is the size of meta-domain ‘x’, ‘j ’ is an 

aligned domain position, ‘ ’ are the number of missense variants found in all 

domain homologues aligned to position ‘j ’ and ‘ ’ are the number of missense 

variants in ‘ ’ that are of identical change in amino acid (i.e. that have identical 

reference residues and change to the same alternate residue). The  

normalizes the CMVS with respect to the domain size.

We assigned values of significance to patterns of missense variants observed in 

meta-domains by comparing these to permuted meta-domains resulting from 

Monte Carlo experiments. In these experiments we shuffled missense variants 

in each domain occurrence ‘xi’. To perform this shuffling, we first estimated the 

probability of a missense variant to occur in ‘xi’ via  , where ‘

’ are the number of aligned residues and ‘ ’ are the number of missense 

variants found in domain ‘xi’. Then we estimated the probability for any missense 

variant to occur on an aligned position ‘j’ by considering the codon of that position 

with respect to the codon table: . Finally, we distributed 

missense variants on the domain occurrence by combining these two probabilities 

and assessing each possible missense variant. The distribution of missense 

variants was subsequently used to reconstruct a permuted meta-domain over 

1,000 experiments for each meta-domain.

The patterns of missense variants across homologues were then tested for 

significance in two different ways. First we computed per aligned position the ratio 

of missense variants observed in contrast to the number of domain occurrences 

aligned. We checked if a position is significantly enriched for either the reference 

allele or the missense variant allele as compared to the same position in the 

permuted meta-domains. We report the meta-domains for which more than 75% 

of the positions are significantly different from the permuted meta-domains. 

Secondly, we tested whether the entire meta-domain is significantly enriched 

for identical variants via NCMVS as compared to the permuted meta-domain. In 

both cases we made our comparisons with the Welch’s t-test and used Bonferroni 

correction for multiple testing.
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Results
In total 16,684 GENCODE genes were mapped to Swiss-Prot protein sequences 

and annotated with protein domains from Pfam (Methods). We found 5,250 Pfam 

domains spanning 33,638 domain occurrences in these genes, of which 30,853 

made up 2,750 within-human Pfam domain homologues (Supp. Table S1). We 

found 961 Pfam domain homologues to occur in exactly two different genes and, 

on average, a within-human homologous protein domain occurs in at least six 

different human genes. The most prevalent domains were the “KRAB domain” 

(PF01352), “Zinc finger, C2H2 type” (PF00096) and “Protein kinase domain” 

(PF00069), each being present in more than 300 different human genes. Pfam 

protein domains covered approximately 41% of coding sequences of the 16,684 

genes. In total 1,493,414 synonymous, 2,892,092 missense variants from ExAC, 

58,968 DM missense variants from HGMD, and 14,016 Pathogenic missense 

variants from ClinVar are present in the coding regions of our set of genes. 71% 

of disease-causing missense variants from HGMD and 72% pathogenic missense 

variants from ClinVar occur in Pfam domain regions (Supp. Table S2). 

Tolerance to genetic variation of protein domains

Regions that code for protein domains are sometimes much less tolerant than 

the whole coding region of a gene.9 Therefore, we first wanted to test how similar 

tolerance patterns in protein domains are to their respective genes. We used the 

population-based variation from ExAC to compute the ratio of missense over 

synonymous variants (dN/dS). This, we used as a measure of genetic tolerance 

scores for all genes and Pfam domains (Supp. Data S1 and S2; Methods). We 

compared the tolerance measured in genes of different gene sets that are 

known to have a particular pattern of genetic tolerance,59 to the tolerance of the 

regions with protein domains in these genes. We found that protein domains in 

genes known as intolerant, such as housekeeping genes69 and genes involved 

in neurodevelopmental disorders,70 are indeed intolerant too (Welch’s t-test 

p=4.33e-61 and p=5.24e-57 respectively; Supp. Table S3, S4). Conversely, we 

found that domains in genes that are known to be tolerant to protein truncating 

variation and variation in general71 are also tolerant to missense variation (Welch’s 

t-test p=7.42e-23; Supp. Table S3 and S4; Figure 1a and 1b). Thus we find that 

protein domains have a similar trend of tolerance as their genes. 
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After establishing that genetic tolerance of a domain mimics that of its respective 

gene we wondered whether dN/dS scores are consistent across domain homologues. 

We used the Median Absolute Deviation (MAD) computed over the homologues 

of a domain to test for the consistency of genetic tolerance (Supp. Data S3; 
Methods). We find that 2,741 out of 2,750 (99%) aggregated homologues show a 

consistent pattern of dN/dS scores as compared to what may be expected by chance 

(Welch’s t-test p<0.05, Bonferroni corrected; Methods; Supp. Table S5; Figure 1c). 
The most consistently intolerant domain was the “SRF-type transcription factor 

(DNA-binding and dimerisation domain)” (PF00319) whereas the “Keratin, high-

sulphur matrix protein” (PF04579) is the most consistently tolerant domain (Supp. 
Table S6, S7). These results show that domains have tolerance patterns that are 

consistent over homologues, and thus that genetic variation in one protein domain 

is therefore not fully independent from the variation measured in the homologues 

of that domain. This potentially allows us to aggregate variant information across 

protein domain homologues.

Interestingly, enrichment analysis for Gene Ontology Biological Process (GOBP) 

on the top 5% of most intolerant domains (n = 134) found that these are strongly 

enriched for biological processes such as chromatin condensation, chromosome 

organization and DNA packaging (p=5.90e-08, p=7.10e-05, p=1.10e-05 respectively, 

Supp. Data S4). This connection to chromatin remodelling has also been observed 

among dominant genes for neurodevelopmental disorders.72–74 
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◀ Figure 1. Tolerance in genes, domains and domain homologues

A.) Tolerance to normal genetic variation as measured via the dN/dS ratio (Methods). A higher 
dN/dS ratio means that the gene is more tolerant to genetic variation and vice versa. From left 
to right data is presented for all 16,684 genes (blue), 398 genes involved in neurodevelopmental 
disorders (green),70 361 housekeeping genes (red),69 157 loss-of-function tolerant genes (purple).71 
All groups are significantly different (Supp. Table S3). B.) As A. with the exception that the dN/dS 
ratio is now computed only for domain regions. All 33,638 domains (blue), 1,302 domains in genes 
involved in neurodevelopmental disorders (green), 811 domains in housekeeping genes (red), 358 
domains present in loss-of-function tolerant genes (purple). All groups are significantly different 
(Supp. Table S4). C.) The consistency of dN/dS scores across homologous domains computed via 
the MAD of the dN/dS (Methods). The lower the MAD score the more consistent is the dN/dS ratio. 
There are 2,750 Pfam domains that have homologues in our set of genes with a total of 30,853 
occurrences (blue). Of the Pfam domains, 383 have a homologue occurring in a gene involved 
in neurodevelopmental disorders (green), 223 have a homologue occurring in a housekeeping 
gene (red), and 178 have a homologue occurring in a loss-of-function tolerant gene (purple). 
The permuted domains (yellow) consists of 27,500,000 permutated MAD scores that resulted by 
computing the MAD score using the median dn/d of another Pfam domain (Methods). All groups 
have been found significantly different from the permuted domain group (Supp. Table S5). The 
impact of different domain sizes on the MAD score is minimal (Supp. Figure S5 and S6).

Population variability across domain homologues mimics 
evolutionary conservation

Although many methods have made use of population-based genetic variation 

to assess genetic tolerance, it has remained unclear to what extent population 

variability complements information from evolutionary conservation. Within-

human protein domain homologues offer the unique opportunity to answer this 

question. We compared the consistency of population-based genetic variation with 

evolutionary conservation across homologous domain positions by investigating 

81 Pfam domains that have at least 50 homologous instances in our set of human 

protein-coding genes, twice of what we need to ensure high-quality alignments 

(Methods). In total, for 6,536 positions of these 81 domains we measured relative 

entropies based on population and evolutionary variation in 14,059 human 

domain instances. We observe a high degree of correlation between these two 

groups (Pearson = 0.97, p-value < 1e-308; Methods; Figure 2a). We validated this 

result further by splitting the population–based entropies evenly into two separate 

groups, each consisting of 25 or more homologous instances. This way we can 

test for any noise in the computation of within-human conservation. Again, the 

relative entropies results in an almost perfect correlation (Pearson = 0.96, p-value 

< 1e-308; Figure 2b). These results show that variation in the human population 

measured across homologous protein domains faithfully mimics evolutionary 

conservation, thereby providing support for our proposed approach to aggregate 

genetic variation across domain homologues. 
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Figure 2. Evolutionary conservation and within-human conservation in Pfam domains 

For 81 domains that have 50 or more homologues within the human genome we computed the 
relative entropy to measure the conservation of amino acid residues per position in these domains 
for both evolutionary conservation based on Pfam and within-human conservation based on 
ExAC (Methods). In both plots the x and y-axis represent the relative entropy for a single position 
in a domain that ranges from 0.0 to 1.0; conserved to variable. A. On the y-axis evolutionary 
conservation is represented by the relative entropy per position based on Pfam. The x-axis shows 
variability measured solely in the human genome, based on relative entropy computed from 
ExAC. These two measurements show almost perfect correlation. (Pearson correlation coefficient 
= Pearson = 0.97, p-value < 1e-308). B. A validation of the results presented in A where we split the 
relative entropy measured solely in the human genome in two, hereby comparing the conservation 
solely between human protein domains. Again we observe an almost perfect correlation (Pearson 
correlation coefficient = 0.96, p-value < 1e-308).

To establish whether population variation adds additional information for variant 

interpretation compared to evolutionary conservation we assessed how disease-

causing and population-based missense variants are distributed with respect 

to evolutionary conservation. We expected to find that positions containing 

disease-causing variants are conserved in general, whereas positions with genetic 

missense variants common in the human population are expected to be variable. 

Therefore we investigated 17,195 positions in 1,079 Pfam domains with 31,732 

disease-causing missense variants from HGMD. Contrary to what we expected, 

more than 54% of the positions with a disease-causing missense variant were 

found to be evolutionary variable with a relative entropy of 0.5 or higher (Figure 
3a). The local maxima, observed between 0.0 and 0.1 relative entropy in Figure 
3a, was expected to degrade gradually for higher levels of entropy. As this is a 

measurement on protein domains, we hypothesize that this local maxima is 
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caused by mutations that affect active site residues. In line with our expectations, 

when we performed the same analysis for positions with missense variants that 

have >0.1% allele frequency in ExAC, we found that 77% of these positions was 

highly variable (Figure 3b). These results highlight that evolutionary conservation 

is not the perfect indicator for pathogenic mutations, and that population-based 

genetic tolerance scores may function as a complementary approach in variant 

interpretation.

Figure 3. Number of missense variants per position in a meta-domain in perspective of 
conservation

Plotted here is the binned distribution of positions that contain one or more missense variant of 
interest with respect to the evolutionary conservation of the position where these variants occur. 
The x-axes are denoted by “Relative entropy (Pfam)” and the y-axes are marked as the overall 
percentage of these positions. The figure shows that disease-causing missense variants also affect 
very variable sites. A. 17,195 different positions spanning 1,079 Pfam domains. On these positions 
31,732 disease-causing missense variants from HGMD were found in 22,651 domain occurrences 
in the human genome. Of these positions, 54% have relative entropy 0.5 or higher. B. 13,571 
different positions spanning 1,965 Pfam domains. On these positions 17,258 missense variants 
with an allele frequency above 0.1% in ExAC were found in 27,767 domain occurrences. 77% of 
these positions have relative entropy 0.5 or higher.

Creation of meta-domains by aggregating genetic variation over 
domain homologues

Based on our results that genetic variation is consistent across human protein 

domain homologues, and that population-based genetic variation correlates 

faithfully with evolutionary conservation, we hypothesized that genetic variation 

can be aggregated across homologous domains to provide a more detailed 

map of genetic variation. Hence, we projected disease-causing and population-

based missense variation found in human protein domains onto Pfam domain 

consensus positions giving rise to a “meta-domain” (Methods; Figure 4). In total 
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we successfully projected 20,404 population-based missense variants with >0.1 

% allele frequency from ExAC, 35,069 disease-causing missense mutations from 

HGMD and 8,569 pathogenic missense mutations from ClinVar (Supp. Data S5; 
Methods). We tested whether there was any overlap between the pathogenic and 

population-based missense variants on aligned positions by comparing HGMD 

DM with ExAC and found a negative correlation (Pearson = -0.51, p-value < 1e-308; 

Supp. Figure S1) indicating that disease-causing missense variants at aggregated 

domain positions often are paired with the absence high-frequency population 

missense variants and vice versa. This suggests that the information annotated to 

the meta-domains may be used to enhance variant interpretation.

To further confirm that aggregation of variants to Pfam domain consensus 

positions is meaningful, we perform two separate analyses. We first performed 

Monte Carlo experiments to test whether missense variants re-occur at the 

same position in domain homologues more often than could be expected by 

chance. We find that high-frequency population missense variants in 68% of 

the meta-domains re-occur at the majority of the aligned positions, and that 

this is significantly different from what may be expected by chance (Bonferroni 

corrected p<0.05 Welch’s t-test; Supp. Data S6 and S7; Methods). Similarly we 

find that HGMD DM and ClinVar Pathogenic missense variants, in 65% and 62% of 

the meta-domains respectively, re-occur at the majority of the aligned positions 

(Bonferroni corrected p<0.05 Welch’s t-test; Supp. Data S6 and S7). This analysis 

shows that the re-occurrence of missense variants found at aligned positions over 

all domain homologues follows a non-random pattern.

In our second analysis, again we perform Monte Carlo experiments and compute 

for each meta-domain our NCMVS metric to quantify how many missense variants, 

which re-occur at the same position, are also of identical change in amino acid 

(Methods). This way we find that high-frequency population missense variants 

in 21% of the meta-domains have significantly more variants of identical change 

at aligned positions across homologues as compared to what may be expected 

by chance. The pathogenic missense variants from HGMD DM and ClinVar 

Pathogenic datasets show a similar signal, with 23% and 18% respectively, of the 

meta-domains having an enriched NCMVS (Bonferroni correction p<0.05 Welch’s 

t-test; Supp. Data S7; Methods). This second analysis shows that the change in 

amino acid of missense variants found over all domain homologues is for a large 

set of domains more often identical than what may be expected by chance.
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Figure 4.Meta-domain construction in a schematic representation.

Genetic information is aggregated into a meta-domain based on domain homology. A. In this 
specific example there are three human proteins (indicated by the grey bars) with four domains 
that are found to have the same Pfam domain identifier and therefore belong to the same 
homologous domain group (indicated by A, B, C, and D). Red vertical lines in these domains 
indicate missense variants. There are other domains found in these proteins, but these are not 
further used in this specific example. B. The homologous domains together with their respective 
missense variants are extracted from the proteins and are aligned according to the Pfam domain. 
Based on the alignment the missense variants are then aggregated into a meta-domain. Some of 
these missense variants were aligned to the same position, in the meta-domain this is expressed 
with a higher blue column.

The results of these two analyses find that missense variation in domains follow a 

non-random pattern. Such a non-random pattern in pathogenic variants suggests 

that specific positions in domains are more likely to have a pathogenic effect via 

missense variants as compared to other positions. Conversely, finding a non-

random pattern for re-occurring high-frequency population missense variants 

provides insight into positions that are genetically tolerant. These findings support 

our hypothesis that variant information can be aggregated across homologous 

domains, and that aggregation may help to interpret variants of unknown 

significance.
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Investigating a meta-domain in detail

To illustrate how these meta-domains can straightforwardly be used to improve 

variant interpretation we investigated one meta-domain in detail; the “EGF-like 

domain” (PF00008). This domain has 244 homologous occurrences in 60 different 

human genes (Figure 5). The “EGF-like domain” has the second highest NCMVS in 

the context of HGMD DM missense variants, and the 13th highest based on high-

frequency population variants (Supp. Data S7). This suggests that the majority of 

variants often re-occur at aligned positions across the 244 homologues as identical 

changes in amino acids. Based on what is known from EGF-like domains, any 

changes to the conserved cysteines will cause loss of a stabilizing disulphide bond 

that are necessary for the structure of the domain.45 As expected, we find that the 

highly conserved cysteines are indeed enriched for disease-causing variants across 

the 244 homologues. Furthermore, all of the conserved cysteines are depleted 

for population-based missense variants, with the exception of consensus position 

six, confirming the importance of these residues. For consensus position six we 

observe that population variation is present in only one homologue. This specific 

variant in NOTCH4 (p.Cys815Gly, rs150079294) has an allele frequency 0.1632% 

in ExAC. dbSNP suggests that this variant is benign based on a single study75,76 

whereas our results further support the notion that this variant is problematic for 

this domain because of almost complete absence of common variation across the 

homologues. Even more interesting are the positions that are not evolutionary 

conserved (>0.6 relative entropy), but nevertheless depleted of population-based 

missense variation. In this “EGF-like domain” example, we find one such position 

at 21. In support of our hypothesis, we find multiple disease-causing missense 

mutations in different homologous domains at this position. We find that these 

▶Figure 5. An example of the EGF-like domain, represented as a meta-domain. 

The “EGF-like domain” (PF00008) occurring in 60 different human genes found to be significantly 
enriched for identical disease-causing missense variants across 244 homologues. X-axis shows the 
amino acid positions of this domain. The green bars in the top panel indicate how many missense 
variants with >0.1% allele frequency from ExAC are found over the 244 homologous domains and. 
The black bars indicate the number of missense variants that are of identical chance in amino 
acid (i.e. having identical reference and alternate residues). The middle panel denotes the Pfam 
HMM sequence logo generated via the Skylign tool42 where the height of each stack of residues 
indicates the relative entropy for that position. The thin red vertical lines in the sequence logo 
denote regions prone to contain deletions and the orange lines are regions prone to insertions 
based on the Pfam HMM. In the bottom panel red bars indicate the number of a disease-causing 
variant found across the 244 homologous domains. Black bars again indicate identical mutations. 
A comparison with ClinVar was made as well, albeit the dataset is much sparser as compared to 
HGMD (Supp Figure S7).
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disease-causing mutations have been previously linked to CADASIL (OMIM #125310, 

p.Tyr337Cys, p.Tyr1021Cys, p.Tyr1069Cys in NOTCH3 (Q9UM47). CADASIL is an 

adult-onset autosomal dominant hereditary stroke disorder.77 Other mutations 

aligned to this consensus position are p.Tyr690Asp in JAG1 (P78604) associated 

with Biliary atresia extrahepatic (OMIM %210500), a disorder in infants that is 

fatal within the first two years of life when untreated,78,79 and p.Arg628Cys in CRB2 

(Q5IJ48) associated with Nephrotic syndrome steroid resistant (OMIM #616220), a 

childhood onset renal disorder.80

These results illustrate how meta-domains can be straightforwardly used to 

improve the interpretation of genetic variants of unknown significance. We 

have made our mapping of genomic positions to meta-domain identifiers and 

consensus positions available for the wider genetic community to make use of in 

Supp. Data S8.

Discussion
Here we combined two distinct concepts into a novel method for variant 

interpretation. Firstly, we used the observation that mutations at aligned 

positions in homologous proteins commonly lead to the same or similar effects 

on those proteins’ structure and function. Secondly, large datasets of population 

scale exome data have made it possible to determine the degree of intolerance 

to genetic variation for individual genes in order to identify potential disease 

genes. We combined these two concepts by aggregating population variation 

across homologous protein domain positions and thereby achieving single base 

resolution for genetic intolerance. As genetic data accumulates in the coming years, 

our method will become more and more accurate in predictions of intolerance at 

the single base pair level (Supp. Figure S2 and S3). 

To quantify genetic tolerance in genes, protein domains and domain homologues 

(Figure 1) we made use of the dN/dS score rather than other well-established 

tolerance scores such as pLI,50 RVIS,8 and subRVIS.9 The dN/dS metric was originally 

intended for detecting selective evolutionary pressure in protein-coding regions 

and genomes,81–83 and has previously been used by us and others to measure 

genetic tolerance and predict disease genes.10,59,84 Our choice for this score was 

motivated by the fact that the mentioned tolerance scores typically capture a 
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more general notion of tolerance to genetic variation and are not designed to 

measure tolerance for any specific genic region of interest.

Contrary to our expectations we found that 54% of disease-causing missense 

variants are evolutionary variable. There are some explanations why we find 

this result: Firstly, we did not take into account whether disease-causing variants 

asserted their effect in a dominant or a recessive fashion. We know that mutations 

in dominant disease genes are in general more conserved than mutations in 

recessive genes. Secondly, we know that not all disease-causing variants have the 

same severity in terms of fitness. For example, mutations causing infertility will be 

much more selected against than mutations causing genetic deafness. Thirdly, a 

large percentage of HGMD DM variants used to be present in recent population 

databases and may therefore be incorrect.85 Although in the version we used, 

this number was significantly reduced, some may still be present.86,87 Finally, our 

comparison does not account for unobserved (potentially lethal) variants, as many 

of these variants are likely to have never been observed, nor ever will be. 

In our meta-domains, we tested whether high-frequency missense variants with an 

allele frequency > 0.1% in ExAC are repeatedly enriched or depleted on Pfam domain 

consensus positions. This strict cut-off of 0.1% may cause us to miss variants with 

allele frequencies smaller than 0.1% at corresponding positions in homologues. 

We choose this cut-off in order to exclude the possibility of artefacts in the ExAC 

database, and for increasing the likelihood that variation is truly benign. Setting a 

stricter threshold such as 0.5% decreases the number of ExAC missense variants 

in meta-domains by 56%. Allowing for a less stringent cut-off will add a substantial 

amount of genetic variation to our model that would improve our sensitivity, but 

likely at the cost of specificity (Supp. Figure S4, Supp, Data S9). We expect there 

is still much to be gained from these ‘rare’ variants found in population cohorts. 

Furthermore we note that by aggregating genetic variation, the specific context 

such as haplotype information or interactions with other proteins, may be lost. 

An aggregation may only encapsulate general biological or molecular functions 

attributed to the domain. Nonetheless, we believe these meta-domains can be 

used to better interpret variants of unknown significance simply based on our pre-

calculated meta-domains (Supp. Data S5 and S8), but also by incorporating these 

results in existing methods for variant effect prediction. 
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Supporting Information
All supplementary information can be found online with the published article at
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Abstract
The growing availability of human genetic variation has given rise to novel 

methods of measuring genetic tolerance that better interpret variants of unknown 

significance. We recently developed a concept based on protein domain homology 

in the human genome to improve variant interpretation. For this purpose, we 

mapped population variation from the Exome Aggregation Consortium (ExAC) and 

pathogenic mutations from the Human Gene Mutation Database (HGMD) onto 

Pfam protein domains. The aggregation of these variation data across homologous 

domains into meta-domains allowed us to generate amino acid resolution of 

genetic intolerance profiles for human protein domains. 

Here, we developed MetaDome, a fast and easy-to-use web server that visualizes 

meta-domain information and gene-wide profiles of genetic tolerance. We updated 

the underlying data of MetaDome to contain information from 56,319 human 

transcripts, 71,419 protein domains, 12,164,292 genetic variants from gnomAD, 

and 34,076 pathogenic mutations from ClinVar. MetaDome allows researchers 

to easily investigate their variants of interest for the presence or absence of 

variation at corresponding positions within homologous domains. We illustrate 

the added value of MetaDome by an example that highlights how it may help in 

the interpretation of variants of unknown significance. The MetaDome web server 

is freely accessible at https://stuart.radboudumc.nl/metadome.
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Introduction
The continuous accumulation of human genomic data has spurred the development 

of new methods to interpret genetic variants. There are many freely available web 

servers and services that facilitate the use of these data by non-bioinformaticians. 

For example, the ESP Exome Variant Server58,88 and the Genome Aggregation 

Database (gnomAD) browser50,89 help locate variants that occur frequently in the 

general population. These services are used for the interpretation of unknown 

variants based on the assumption that variants occurring frequently in the general 

population are unlikely to be relevant for patients with Mendelian disorders.90 

There are also methods that derive information from these large human genetic 

databases. For example genetic intolerance, which is commonly used to interpret 

variants of unknown significance by assessing whether variants stand out because 

they occur in regions that are genetically invariable in the general population.9,10  

Examples of such methods are RVIS8 and subRVIS.9 The strongest evidence for the 

pathogenicity of a genomic variant comes from the presence of that variant in 

any of the clinically relevant genetic variant databases such as the Human Gene 

Mutation Database (HGMD)91 or the public archive of clinically relevant variants 

(ClinVar).54 These databases are gradually growing in the amount of validated 

pathogenic information. 

Another way to provide evidence for the pathogenicity of a genomic variant is to 

observe the effect of that variant in homologous proteins across different species. 

Mutations at corresponding locations in homologous proteins are found to result 

in similar effects on protein stability40 and can facilitate variant interpretation 

between disease genes and their paralogues.92 Finding homologous proteins is one 

the key applications of BLAST.38 Transferring information between homologous 

proteins is one of the oldest concepts in bioinformatics, and can be achieved by 

performing a multiple sequence alignment (MSA) and locating equivalent positions 

between the protein sequences. We have previously used this concept and showed 

that it also holds for homologous Pfam protein domain relationships within the 

human genome. We found that ~71-72% of all disease-causing missense variants 

from HGMD and ClinVar occur in regions translating to a Pfam protein domain and 

observed that pathogenic missense variants at equivalent domain positions are 

often paired with the absence of population-based variation and vice versa.93 By 

aggregating variant information over homologous protein domains, the resolution 

of genetic tolerance per position is increased to the number of aligned positions. 
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Similarly, the annotation of pathogenic variants found at equivalent domain 

positions also assists the interpretation of variants of unknown significance. This 

use of variant information from homologous protein domains was dubbed ‘meta-

domains’. We realized that this type of information could be of great benefit to the 

genetics community and therefore developed ‘MetaDome’.

MetaDome is a freely available web server that uses our concept of meta-domains 

to optimally use the information from population-based and pathogenic variation 

datasets without the need of a bioinformatics intermediate. MetaDome is easy to 

use and utilizes the latest population datasets by incorporating the gnomAD and 

ClinVar datasets.

Methods

Software architecture of MetaDome

MetaDome is developed in Python v3.5.194 and makes use of the Flask framework 

v0.12.495 for the web server part which communicates between the front-end, the 

back-end, and the database. The software architecture (Supp. Figure S5) follows 

the Domain-driven design paradigm.96 The entities in the domain part of this 

software architecture are rich data representations that are based on the internal 

database (Creating the mapping database) and annotations from external 

resources. These entities are stored after their first creation and afterward directly 

used for data retrieval to make the lookup in MetaDome as efficient as possible. 

The code is open source and can be found at our GitHub repository: https://github.

com/cmbi/metadome. Detailed instructions on how to deploy the MetaDome web 

server can be found there too. 

To ensure MetaDome can be deployed to any environment and provide a high 

degree of modularity, we have containerized the application via Docker v17.12.1.97 

We use docker-compose v1.17.1 to ensure that different containerized aspects of 

the MetaDome server can work together. The following aspects are containerized 

to this purpose: 1.) The Flask application, 2.) a PostgreSQL v10 database wherein 

the mapping database is stored, 3.) a Celery v4.2.0 task queue management 

system to facilitate the larger tasks of the MetaDome web-based user requests, 4.) 

a Redis v4.0.11 for task result storage, and 5.) RabbitMQ v3.7 to mediate as a task 

broker between client and workers. For a full overview of the docker-compose 

architecture we refer to Supp. Figure S6.



MetaDome

3

63   

The visualization medium of the MetaDome web server is a fully interactive and 

responsive HTML web page. This page is generated by the Flask framework and 

the navigation aesthetics are made using the CSS framework Bulma v0.7.1.98 The 

visualizations of the various landscapes and the schematic protein are created 

with JavaScript, JQuery v3.3.1, and the D3 Framework v4.13.0.99 As the visualization 

by the D3 Framework is highly dependent on the user’s cpu power, so are the 

visualizations of MetaDome.

Datasets of population and disease-causing genetic variation

MetaDome makes use of single nucleotide variants (SNVs) from population and 

clinically relevant genetic variation databases. Population variation was obtained 

from the gnomAD r2.0.2 VCF file by selecting all synonymous, nonsense, and 

missense variants that meet the PASS filter criteria. Variants meeting the PASS 

criteria are considered to be true variants.50 The variants in the VCF file from 

ClinVar release 2018 05 03 with disease-causing (Pathogenic) status are used as 

the disease-causing SNVs in MetaDome.

Creating the mapping database

MetaDome stores a complete mapping between genomic, protein positions, and 

all domain annotations (Supp. Figure S7) in a PostgreSQL relational database.100 

This mapping is auto-generated and stored in the PostgreSQL database by the 

MetaDome web server upon the first run. The genomic positions consist of each 

chromosomal position in the protein-coding transcripts of the GENCODE release 

19 GRCh37.p13 Basic set.63 The protein positions correspond to protein sequence 

positions in the UniProtKB/Swiss-Prot Release 2016_09 databank entries for 

the human species.64 These mappings are created with Protein-Protein BLAST 

v2.2.31+62 for each protein-coding translation in the GENCODE Basic set to human 

canonical and isoform Swiss-Prot protein sequences. We exclude sequences that 

do not start with a start codon (i.e. ATG encoding for methionine), or end with 

a stop codon. We checked if the cDNA sequence of the transcripts match the 

GENCODE translation via Biopython’s translate function,101 if they are not identical 

then these are excluded too. The global information on the transcript (e.g. 

identifiers, sequence length) is registered in the database in the table ‘genes’ and, 

for each Swiss-Prot entry with an identical sequence match, the global information 

is stored in the table ‘proteins’. All tables are indexed by the fields that are used 

in the lookups.
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Next, for each identical match between translation and Swiss-Prot sequence 

a ClustalW2 v2.139 alignment is made between these two sequences. Each 

nucleotide’s genomic position is mapped to the protein position and stored in the 

‘mappings’ table. Each entry in mapping represents a single nucleotide of a codon 

and is linked to the corresponding entry in the ‘genes’ and ‘proteins’ table (i.e. the 

corresponding GENCODE translation, transcription and Swiss-Prot sequence). 

Each Swiss-Prot sequence in the database is annotated via InterProScan v5.20-

59.065 for Pfam-A v30.0 protein domains41 and the results are stored in the 

‘interpro_domains’ table. After the construction of the database is finished, all 

meta-domain alignments can be constructed.

Composing a meta-domain

Meta-domains consist of homologous Pfam protein domain instances that are 

annotated using InterproScan. Meta-domains consist of domains that have at 

least two homologues within the human genome. MSAs are made using a three 

step process. 1.) Retrieve all sequences for the domain instances, 2.) Retrieve the 

Pfam HMM corresponding to the Pfam identifier annotated by InterproScan, and 

3.) Use HMMER 3.1b267 to align the sequences from the first step. The resulting 

Stockholm format MSA files can be inspected with alignment visualization software 

like Jalview.102 In this Stockholm formatted file, all columns that correspond to the 

domain consensus represent the same homologous positions.

These Stockholm files are retrieved by the MetaDome web server when a user 

request meta-domain information for a position of their interest. Upon retrieval 

of this Stockholm file, the mapping database is used to obtain the corresponding 

genomic positions for each residue. These genomic positions are subsequently 

used to retrieve corresponding gnomAD or ClinVar variation.

Computing genetic tolerance and generating a tolerance landscape

The non-synonymous over synonymous ratio, or dN/dS score, is used to quantify 

genetic tolerance. This score is based on the observed (obs) missense and 

synonymous variation in gnomAD (missenseobs and synonymousobs). This score is 

corrected for the sequence composition by taking into account the background 

(bg) of possible missense and synonymous variants based on the codon table 

missensebg and synonymousbg): 
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The tolerance landscape computes this ratio as a sliding window of size 21 (i.e. 

ten residues before and ten after the residue of interest) over the entirety of the 

gene’s protein, similar to the Missense Tolerance Ratio (MTR) presented by.103 The 

edges (e.g. start and end) are therefore a bit noisy as they are not the result of 

averaging over a full length window.

Results

Accessibility

The MetaDome web server is freely accessible at https://stuart.radboudumc.nl/

metadome. MetaDome features a user-friendly web interface and features a fully 

interactive tour to get familiar with all parts of the analysis and visualizations. 

All source code and detailed configuration instructions are available in our GitHub 

repository: https://github.com/cmbi/metadome.

The underlying database: a mapping between genes and proteins

The MetaDome web server queries genomic datasets in order to annotate 

positions in a protein or a protein domain. Therefore, the server needs access to 

genomic positional information as well as protein sequence and protein domain 

information. The database maps GENCODE gene translations to entries in the 

UniProtKB/Swiss-Prot databank in a per-position manner and corresponding 

protein domains or genomic variation. With respect to our criteria to map gene 

translations to proteins (Methods; creating the mapping database), 42,116 of 

the 56,319 full-length protein-coding GENCODE Basic transcripts for 19,728 human 

genes are linked to 33,492 of the 42,130 Swiss-Prot human canonical or isoform 

sequences. Of the total 591,556 canonical and isoform sequences present in 

Swiss-Prot, 42,130 result from the Human species. The resulting mappings contain 

32,595,355 unique genomic positions that are linked to 19,226,961 residues in 

Swiss-Prot protein sequences.

71,419 Pfam domains are linked to 30,406 of the Swiss-Prot sequences in our 

database. Of these Pfam domain instances, 5,948 are from a unique Pfam domain 
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family and 3,334 of these families have two or more homologues and are therefore 

suitable for meta-domain construction. Thus, by incorporating every protein-

coding transcript, instead of only the longest ones, we increase the previously 

2,75093 meta-domains to 3,334. These meta-domains, on average, consist of 

16 human protein domain homologues with a protein sequence length of 158 

residues. Table 1 summarizes the counting statistics for sequences, domains, etc.

Database What # of entries

GENCODE Protein-coding genes 20,345

MetaDome Protein-coding genes 19,728

GENCODE Protein-coding transcripts 57,005

MetaDome Protein-coding transcripts 56,319

Swiss-Prot Canonical and isoform protein sequences 591,556

Swiss-Prot Human canonical and isoform protein sequences 42,130

MetaDome Gene translations identically mapped to a canonical 
or isoform protein sequence

42,116

MetaDome Canonical and isoform protein sequences 33,492

MetaDome Pfam protein domain regions 71,419

MetaDome Unique Pfam protein domain families 5,948

MetaDome Unique Pfam protein domain families with two or 
more within-human occurrences

3,334

MetaDome Chromosome to protein position mappings 70,261,143

MetaDome Unique chromosome positions 32,595,355

MetaDome Unique residues (as part of a protein) 19,226,961

MetaDome Unique protein sequences with at least one Pfam 
domain annotated

30,406

Table 1. Statistics on the number of entries present in GENCODE, Swiss-Prot, and our mapping 
database.

How to use the MetaDome web server

At the welcome page users are offered the option to start an interactive tour or 

start with the analysis. The navigation bar at the top is available throughout all 

web pages in MetaDome and allow for further navigation to the ‘About’, ‘Method’, 

‘Contact’ page (Supp. Figure S1). The user can fill in a gene symbol in the ‘gene 

of interest’ field and is aided by an auto-completion to help you find your gene 

of interest more easily (Supp. Figure S2). Clicking the ‘Get transcripts’ fills all 

GENCODE transcripts for that gene in the dropdown box. Only the transcripts that 
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are mapped to a Swiss-Prot protein can be used in the analysis, the others are 

displayed in grey (Supp. Figure S3).

Clicking the ‘Start Analysis’ button starts an extensive query to the back-end of the 

web server for the selected transcript. Firstly, all the mappings are retrieved for 

the transcript of interest. Secondly, the entire transcript is annotated with ClinVar 

and gnomAD single nucleotide variants (SNVs) and Pfam domains. Thirdly, if there 

are any Pfam domains suitable for meta-domain relations then all mappings for 

those regions are gathered and annotated with ClinVar and gnomAD variation 

(methods; Composing a meta-domain).

The web-page provided to the user as a result of the ‘Analyse Protein’ can best be 

explained using an example. Therefore, we have generated this result for gene 

CDK13 for transcript ‘ENST00000181839.4‘ (Figure 1). The result page features four 

main components that we will describe from top to bottom. Located at the top is 

the graph control field. Directly below the graph control is the landscape view of 

the protein. Below the landscape view, a schematic and interactive representation 

of the protein and an additional representation of the protein which controls 

the zooming option. Lastly, at the bottom of the page there is the list of selected 

positions. All of these components are interactive and the various functionalities 

are described in Table 2.
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Figure 1. MetaDome web server result for the gene CDK13

The result provided by the MetaDome web server for the analysis of gene CDK13 with transcript 
ENST00000181839.4, as provided in 1.). In 2.), there is additional information that the translation 
of this transcript corresponds to Swiss-Prot protein Q14004. Here also various alternative 
visualizations can be selected. The visualization starts by default in the ‘meta-domain landscape’, 
a mode selectable in the graph control in 2.). The landscapes are visualized in 3.), and in the 
meta-domain landscape the domain regions are annotated with missense variation counts found 
in homologous domains as bar plots. The schematic protein representation, located at 4.), is 
per-position selectable, and the domains are presented as purple blocks. Selected positions are 
highlighted in green. The ‘Zoom-in’ section at 5.) features a selectable greyed-out copy of schematic 
protein representation that can zoom-in on any part of the protein. Any selected positions are 
in the list of selected positions in 6.). Here more information can be obtained by clicking on one 
of these positions. A detailed description of the functionality of each component is described in 
Table 2.
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Component Functionality

Gene and transcript input 
field 
(Figure 1.1)

• Input of gene of interest
• Retrieving transcripts for gene of interest
• Selecting a transcript
• Starting the analysis for selected transcript

Graph control field 
(Figure 1.2)

• Toggling between different landscape representations
• Reset the zoom on the landscape
• Reset the web page
• Toggle ClinVar variants to be displayed in the schematic 

protein
• Download the visual representation

Landscape view 
(Figure 1.3)

• Displays the meta-domain landscape
• Displays the tolerance landscape

Schematic protein 
(Figure 1.4)

• Displays a schematic representation of the gene’s protein 
with Pfam protein domains annotated

• Hovering over a position displays positional information
• Clicking on a position highlights the position and adds the 

position to the list of ‘Selected Positions’
• Controls the zooming of particular parts of the protein 

(Figure 1.5)

Selected Positions 
(Figure 1.6)

• Displays any positions selected in the schematic protein
• Displays per selected position: if that position is part of 

a Pfam protein domain, any known gnomAD or ClinVar 
variants present at this position, and any variants that are 
homologously related to this position

• Provides more detailed information as a pop-up when 
clicking on one of the positions in this list. 

Table 2. Descriptions of the various functionalities on the MetaDome result page.

Another way to use population-based variation in the context of the entire 

protein is via the tolerance landscape representation in MetaDome that can be 

selected in the graph control component (Figure 1.2). The tolerance landscape 

depicts a missense over synonymous ratio (also known as Ka/Ks or dN/dS) over 

a sliding window of 21 residues ovr the entirety of the protein of interest (e.g. 

calculated for ten residues left and right of each residue) based on the gnomAD 

dataset (methods; Computing genetic tolerance and generating a tolerance 
landscape; Figure 2A). Previously, the dN/dS metric has been used by others and 

us to measure genetic tolerance and predict disease genes,59,84,104 and it is suitable 

for measuring tolerance in regions within genes.10

An example of using the MetaDome web server for variant 
interpretation

The MetaDome analysis result for CDK13 (Figure 1) is the longest protein coding 

transcript for CDK13 with a protein sequence length of 1,512 amino acids. In the 
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resulting schematic protein representation we can observe the Pkinase Pfam 

protein domain (PF00069) between positions 707 and 998 as the only protein 

domain in this gene (Figure 2B). The Pkinase domain is highly prevalent throughout 

the human genome with as many as 779 homologous occurrences in human 

proteins, of which 353 are unique genomic regions. It is the 8th most occurring 

domain in our mapping database. The meta-domain landscape is the default view 

mode and shows any missense variation found in homologous domain occurrences 

throughout the human genome. Population-based (gnomAD) missense variation 

is displayed in green and pathogenic (ClinVar) missense variation is annotated in 

red bars, with the height of the bars depicting the number of variants found at 

each position (Figure 2B).

At the ‘Display ClinVar variants’ the user is provided two options; to highlight all 

known pathogenic information known for the current protein and/or highlight any 

ClinVar variants that are present at homologous positions (Figure 2A). All ClinVar 

variants highlighted are displayed in red. In total six known disease-causing SNVs 

are present in the CDK13 gene itself according to ClinVar, and these all fall within 

the Pkinase protein domain. All of these are missense variants. If we add variants

▶ Figure 2. Examples of a MetaDome analysis for the gene CDK13

A.) The tolerance landscape depicts a missense over synonymous ratio calculated as a sliding 
window over the entirety of the protein (methods; Computing genetic tolerance and generating 
a tolerance landscape). The missense and synonymous variation are annotated from the 
gnomAD dataset and the landscape provides some indication of regions that are intolerant to 
missense variation. In this CDK13 tolerance landscape the Pkinase Pfam protein domain (PF00069) 
in purple can be clearly seen as intolerant if compared to other parts in this protein. The red bars 
in the schematic protein representation correspond to pathogenic ClinVar variants found in this 
gene and in homologous protein domains. All of these variants are contained in the intolerant 
region of the landscape.

B.) A zoom-in on the meta-domain landscape for CDK13. The Pkinase Pfam protein domain 
(PF00069) is located between protein positions 707 and 998 and annotated as a purple box in the 
schematic protein representation. The meta-domain landscape displays a deep annotation of the 
protein domain: the green (gnomAD) and red (ClinVar) bars correspond to the number of missense 
variants found at aligned homologous positions. Unaligned positions are annotated as black bars. 
All of this information is displayed upon hovering over these various elements.

C.) The positional information provides a detailed overview of a position from the ‘Selected 
Positions’ list, especially if that position is aligned to domain homologues. Here, for position 
p.Gly714 we can observe in 1.) the positional details for this specific protein position. In 2.) is any 
known pathogenic information for this position. We can observe here that for this position there 
are two known pathogenic missense variants. In 3.) meta-domain information is displayed and we 
can observe that p.Gly714 is aligned to consensus position 10 in the Pkinase Pfam protein domain 
and related to 329 other codons. This consensus position has an alignment coverage of 93.5% for 
the meta-domain MSA. There are also four pathogenic variants found in ClinVar on corresponding 
homologous positions as can be seen in 4.) and in 5.) there is an overview of all corresponding 
variants found in gnomAD.
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found in homologous domains there are 64 positions with one or more reported 

pathogenic variants (Supp. Data S1). Four of these positions overlap with the 

positions on which ClinVar variants were found in the gene itself and on position 

p.883 (Supp. Figure S4) we can observe a peak of eight missense variants 

annotated from other protein domains.

MetaDome helps to look in more detail to a position of interest. If we do this for 

protein position 714 (Figure 2C) in CDK13 we find that it corresponds to consensus 

position 10 in the Pkinase domain (PF00069). At this position in CDK13 there are 

two variants reported in ClinVar: p.Gly714Arg (ClinVar ID: 375738) submitted by,105 

and p.Gly714Asp (ClinVar ID: 449224) submitted by GeneDX. The first is reported 

as a de novo variant and is associated to Congenital Heart Defects, Dysmorphic 

Facial Features, and Intellectual Developmental Disorder. For the second there 

is no associated phenotype provided. As MetaDome annotates variants reported 

at homologous positions, we can find even more information for this particular 

position. At the homologues aligned to this position we find a variant of identical 

change in PRKD1: p.Gly600Arg (ClinVar ID: 375740) reported as pathogenic and 

de novo in the same study.105 It is also associated to Congenital Heart Defects 

as well as associated to Ectodermal Dysplasia. There are three more reported 

pathogenic variants aligned to this position: MAK:p.Gly13Ser (ClinVar ID: 29783) 

associated to Retinitis Pigmentosa 62,106 PRKCG:p.Gly360Ser (ClinVar ID: 42129) 

associated to Spinocerebellar Ataxia Type14,107 and CIT:p.Gly106Val (ClinVar ID: 

254134) associated to Microcephaly 17, primary, autosomal recessive.106 These 

homologously related pathogenic variants and the severity of the associated 

phenotypes contributes to the evidence that this particular residue may be 

important at this position. Further evidence can be found from the fact that in 

human homologue domains this residue is extremely conserved. There are 330 

unique genomic regions encoding for a codon aligned to this position (Supp. Data 
S2). Only in the gene PIK3R4 (ENST00000356763.3) does this codon encode for 

another residue than Glycine, namely a Threonine at position p.Thr35.

In the same way that we explored pathogenic ClinVar variation we can also 

explore the variation reported in gnomAD. In CDK13 at protein position 714 there 

is no reported variant in gnomAD, but there are homologously related variations. 

There are 65 missense variants with average allele frequency of 1.24E-05 and 

76 synonymous with average allele frequency 8.71E-03 and there is no reported 

nonsense variation (Supp. Data S1). 
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When we inspect the tolerance landscape for CDK13 (Figure 2A) we can see that 

all of the ClinVar variants (either annotated in CDK13 or related via homologues) 

fall within the Pkinase Pfam protein domain (PF00069). In addition, the protein 

domain can clearly be seen as more intolerant to missense variation as compared 

to other parts of this protein, thereby supporting the ClinVar variants likely 

pathogenic role.

Conclusion
The MetaDome web server combines resources and information from different 

fields of expertise (e.g. genomics and proteomics) in order to increase the power 

in analysing population and pathogenic variation by transposing this variation 

to homologous protein domains. Such a transfer of information is achieved by 

a per-position mapping between the GENCODE and Swiss-Prot databases. 79.4% 

of the Human Swiss-Prot protein sequences are of identical match to one or 

more of 42,116 GENCODE transcripts. This means that 25.7% of the GENCODE 

transcriptions differ in mRNA but translate to the same Swiss-Prot protein 

sequence. GENCODE previously reported that this is due to alternative splicing, of 

which a substantial proportion only affect untranslated regions (UTRs) and thus 

have no impact on the protein-coding part of the gene.108

MetaDome is especially informative if a variant of interest falls within a protein 

domain that has homologues. This is highly likely as 43.6% of the positions in 

the MetaDome mapping database are part of a homologous protein domain. 

Pathogenic missense variation is also highly likely to fall within a protein domain 

as we previously observed for 71% of HGMD and 72% of ClinVar pathogenic 

missense variants.93 By aggregating variation over protein domain homologues via 

MetaDome, the resolution of genetic tolerance at a single amino-acid is increased. 

Furthermore, we can obtain variation that could disrupt the functionality of a 

protein domain, as annotated throughout the entire human genome, which may 

potentially be disease-causing. It should be noted, that by aggregating genetic 

variation in this way the specific context such as haplotype information or 

interactions with other proteins may be lost. Aggregation via meta-domains only 

encapsulates general biological or molecular functions attributed to the domain. 

Nonetheless, we believe MetaDome can be used to better interpret variants of 

unknown significance through the use of meta-domains and tolerance landscapes 

as we have shown in our example.
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As more genetic data accumulates in the years to come, MetaDome will become 

more and more accurate in predictions of intolerance at the base-pair level and the 

meta-domain landscapes will become even more populated with variation found 

in homologue protein domains. We can imagine many other ways of integrating 

this type of information to be helpful for variant interpretation. Future directions 

for the MetaDome web server could lead to machine learning empowered variant 

effect prediction, or visualization of the meta-domain information in a protein 3D 

structure.
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Supporting Information
All supplementary information can be found online with the published article at

https://doi.org/10.1002/humu.23798
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Abstract
Haploinsufficiency (HI) is the best characterized mechanism through which 

dominant mutations exert their effect and cause disease. Non-haploinsufficiency 

(NHI) mechanisms, such as gain-of-function and dominant-negative mechanisms, 

are often characterized by the spatial clustering of mutations, thereby 

affecting only particular regions or base pairs of a gene. Variants leading to 

haploinsufficency might occasionally cluster as well, for example in critical 

domains, but such clustering is on the whole less pronounced with mutations 

often spread throughout the gene. Here we exploit this property and develop a 

method to specifically identify genes with significant spatial clustering patterns of 

de novo mutations in large cohorts. We apply our method to a dataset of 4,061 de 

novo missense mutations from published exome studies of trios with intellectual 

disability and developmental disorders (ID/DD) and successfully identify 15 genes 

with clustering mutations, including 12 genes for which mutations are known 

to cause neurodevelopmental disorders. For 11 out of these 12, NHI mutation 

mechanisms have been reported. Additionally, we identify three candidate ID/DD-

associated genes of which two have an established role in neuronal processes. We 

further observe a higher intolerance to normal genetic variation of the identified 

genes compared to known genes for which mutations lead to HI. Finally, 3D 

modeling of these mutations on their protein structures shows that 81% of the 

observed mutations are unlikely to affect the overall structural integrity and that 

they therefore most likely act through a mechanism other than HI.
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De novo mutations affecting protein-coding genes are a major cause of intellectual 

disability (ID) and other developmental disorders (DDs).59,109 Several whole exome 

sequencing (WES) studies have identified ID syndromes molecularly characterized 

by very specific spatial clustering of de novo missense mutations.110–113 Similarly, 

large-scale WES studies of individuals affected by ID/DD have recently leveraged this 

phenomenon as supporting evidence of the involvement of a gene in disease.70,114 

This spatial clustering of de novo mutations (DNMs) is typical for missense 

mutations in genes without clear, or limited numbers of, truncating mutations 

subsequently degraded by nonsense mediated mRNA decay, suggesting that these 

clustered mutations act through a different mechanism than haploinsufficiency 

(HI).115 Alternative pathophysiological mechanisms that might underlie (de novo) 

mutation clustering are gain-of-function or dominant-negative effects, resulting 

in the alteration or impairment of specific protein function.116,117 We note that 

while spatial clustering is commonly taken to indicate a mechanism different from 

loss-of-function,118 this is not an absolute rule, and a loss-of-function mechanism 

cannot be excluded without functional evidence.119 Here, we developed a method 

to identify genes with spatially clustered DNMs and applied this to DNMs identified 

in a large cohort of individuals with ID/DD.120

We downloaded all DNMs occurring in individuals with ID/DD from denovo-

db version 1.3120 identified through WES and whole genome sequencing which 

were then re-annotated with our in-house variant annotation pipeline. The de 

novo mutations included in the analysis were previously validated by a second 

independent method or showed a high validation rate for a subset of de novo 

mutations. In addition, we added 1,183 de novo variants identified in the exomes 

of an in-house ID cohort that was previously published.70 To further reduce the 

risk of including sequencing artifacts and/or genotyping errors, we excluded all de 

novo variants that were present more than once in the ExAC dataset (Table S1).50 

These efforts resulted in 6,495 protein coding DNMs, including 4,061 missense 

mutations, in 5,302 individuals with ID/DD (Table S2).

We set out to determine for any gene whether the observed de novo missense 

mutations cluster more than expected compared to random permutations. 

Hereto, we selected for each the longest representative transcript (i.e. part of 

the GENCODE basic set)63 and calculated the geometric mean distance  over 

all missense DNMs on cDNA.  was calculated by taking the mean distance 
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normalized for transcript length l over all (M) combinations of xi and xj of the 

missense DNMs (Equation 1.), where x represents the position for mutation i and 

j respectively. Statistical significance was determined by performing 1.00E+08 (or 

N) permutations and calculating for each permuted geometric mean distance ( ) 

how many times this resulted in the same or smaller geometric mean distance as 

observed (Equation 2.) Permutation p-values were corrected for multiple testing 

via Bonferroni procedure based on the 19,280 genes of the Agilent SureSelect v5 

exome enrichment kit. 

1.

2.

We first validated our method on a dataset of DNMs identified in 2,448 unaffected 

siblings and healthy control studies120–126 (Table S3). In this cohort, we failed to 

identify genes for which clustering of de novo missense mutations reached 

statistical significance (Table S4). However, application of our method to the 

dataset of 4,061 DNMs, containing 583 genes with more than one de novo missense 

mutation, revealed 15 genes with significant clustering70,114,127–129 (Table 1, Figure 
1, Figures S1-S15). In these genes, a total of 107 de novo missense mutations 

contributed to mutation clustering, ranging from three to 20 mutations per gene 

with an average distance ranging from 0 to 354 bp. To exclude a correlation 

between the extent of clustering and the total number of de novo missense 

mutations analyzed, we applied our method to a cohort of 6,154 de novo missense 

variants present in Denovo-db excluding the five studies incorporated in the ID/DD 

cohort, and found no such correlation (Figure S16). To examine whether this set 

of 15 genes is relevant in the context of ID/DD, we compared these genes to a list 

of 1,541 genes for which mutations are known to cause ID/DD (Table S5). This list 

of genes was a compilation of two manually curated lists of disease related genes 

including “confirmed” unique genes from DDG2P (n=1,098; see Web Resources) 

and 1,034 genes offered for diagnostic testing in individuals with ID/DD by our 
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in-house diagnostic facility (see Web Resources). Among the 15 identified genes 

with mutation clustering, we find 12 genes for which mutations have previously 

been implicated in ID/DD, constituting a significant enrichment (p=3.09e-03; 

Fisher’s exact test; Tables S6 and S7), and confirming that our method is valid for 

its purpose.. The inclusion of exome data of two large DDD-studies in both the 

DDG2P gene list and the ID/DD cohort of this study could introduce a potential 

bias109,114. To exclude such bias we repeated this analysis while excluding the DDD 

specific genes identified in the two exome studies yielding a significant enrichment 

(p=3.68E-02; Table S7A-C).

Figure 1. Examples of Identified Genes with Clustering Mutations

Protein domains are annotated based on Pfam HMM search.41 cDNA locations of de novo missense 
mutations are depicted by blue pins. Genes shown here are as follows: SMAD4 (A), CDK13 (B), 
PACS2 (C). Figures visualizing the clustering of de novo missense mutations in the other 12 genes 
are provided in Figures S1–S15.
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Table 1. List of identified genes with clustering de novo missense mutations. Genes previously 
known to be involved in neurodevelopmental disorders are indicated in italics. P-values are based 
on a permutation test (N=1.00E+08). Adj. p-values are corrected by Bonferroni correction. The 
three identified genes with that have not yet been implicated in ID/DD are indicated by an ‘a’. 

Gene name Transcript ID # de novo 
missense

Median 
distance 

(bp)

P-value Adj.
p-value

ACTL6Ba ENST00000160382 3 0 5.70E-07 1.10E-02

ALG13 ENST00000394780 3 0 1.50E-07 2.89E-03

CDK13 ENST00000181839 12 273 <1.00E-08 <1.93E-04

COL4A3BP ENST00000380494 6 18 2.60E-07 5.01E-03

GABBR2a ENST00000259455 3 0 9.00E-08 1.74E-03

GRIN2B ENST00000609686 11 354 1.57E-06 3.03E-02

KCNH1 ENST00000271751 7 65 1.00E-07 1.93E-03

KCNQ2 ENST00000354587 20 301 5.00E-08 9.64E-04

KIF5C ENST00000435030 3 0 1.40E-07 2.70E-03

PACS1 ENST00000320580 9 0 <1.00E-08 <1.93E-04

PACS2a ENST00000458164 3 0 1.50E-07 2.89E-03

PCGF2 ENST00000360797 3 0 1.11E-06 2.14E-02

PPP2R1A ENST00000322088 4 5 4.60E-07 8.87E-03

PPP2R5D ENST00000485511 16 10 <1.00E-08 <1.93E-04

SMAD4 ENST00000398417 4 6 1.60E-07 3.08E-03

We also identified three genes with clustered de novo missense mutations that 

have not yet been implicated in ID/DD: ACTL6B (MIM:612458), GABBR2 (MIM:607340) 

and PACS2 (MIM:610423). None of these genes would have been identified based 

on enrichment for de novo mutations in this cohort (Table S8). Further systematic 

evaluation of gene function supports a role in (neuro)development for two of 

these genes (Table 2 and Table S9). ACTL6B, encoding Actin-like 6B (also known 

as BAF53B), is a pivotal co-factor for the SWI/SNF neuron-specific chromatin 

remodeling complex nBAF, which is required for neural development and 

dendritic outgrowth.130,131 Also, GABBR2, which is a component of the G-protein-

coupled GABA receptor, plays a critical role in the fine-tuning of inhibitory synaptic 

transmission,132–134 and other members of the GABA receptor family have already 

been conclusively linked to neurodevelopmental disorders.135,136 GABBR2 was very 

recently also reported by others to show significant de novo mutation clustering 

in a neurodevelopmental cohort.113
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Table 2. Gene function for candidate genes with clustered mutations. First column indicates 
the gene name, second column a summary of the known gene functions; third column indicates 
whether the gene has physical interactions with other proteins. (See Table S9 for extended 
information).

Summary of gene function Interactions

ACTL6B Belongs to the neuron-specific chroma-
tin remodeling complex (nBAF complex) 
and is required for postmitotic neural 
development and dendritic outgrowth. 

Complex formation with ACTB, 
ARID1A, SMARCA2, SMARCA4, 
SMARCE1, SMARCC1, SMARCC2, 
SMARCD2, SMARCB1

GABBR2 Postsynaptic GABAB Receptor Activity 
Regulates Excitatory Neuronal Architec-
ture and Spatial Memory.

Heterodimerization is required 
for the formation of a functional 
GABA-B receptor.

PACS2 Multifunctional sorting protein, contro-
ling endoplasmic reticulum-mitochond-
ria communication and Bid-mediated 
apoptosis.

 N/A

Our method might potentially identify clustering based on identical mutations 

in multiple individuals only as a result of issues in the underlying cohort. It 

could for instance be that the same individual was included in multiple studies 

and therefore occurs twice in the cohort. For 99 out of 107 de novo missense 

mutations (92.5%) occurring in the 15 genes with clustering mutations we could 

decisively conclude that they occurred as unique events in separate individuals 

based on a combination of the gender of the affected individual and the presence 

of additional de novo mutations (Table S10). Nevertheless, it might be possible 

that siblings of affected individuals were included who share a DNM due to 

parental gonadal mosaicism.137  Alternatively, DNMs might occur multiple times in 

disease cohorts as a consequence of a locally increased mutation rate. Examples 

of the latter might for instance incur a selective growth advantage (i.e. selfish 

mutations138) and thereby result in a pattern of mutational clustering such as 

known for FGFR2 (MIM: 176943) mutations in Apert syndrome (MIM: 101200).138 

However, biological relevance for the mutations in the identified genes in the 

context of ID/DD is suggested by the fact that in our control cohort genes with 

significant clusters were absent, and that for the majority of our identified genes 

experimental evidence in literature supports a NHI mutational mechanism (Table 
S11).

We hypothesized that the clustering de novo missense mutations of the 15 genes 

might exert their effects through mechanisms other than haploinsufficiency. To 

validate this hypothesis, we compiled a set of 116 genes known for mutations 
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that exert disease through non-haploinsufficient (NHI) mechanisms. Hereto, 

we selected for genes that have a “confirmed” status in the DDG2P list, or are 

present on both the Radboudumc ID/DD diagnostic testing and DDG2P lists 

(irrespective of the DDG2P status). Furthermore, genes were selected to be (i) 

dominant (mono-allelic), with the pathophysiological mechanism being either 

“activating”, “all missense/in frame” and/or “dominant negative” (Table S12). In 

addition, we generated a set of 183 haploinsufficient genes for which mutations 

are associated with ID/DD from the DDG2P gene list by selecting “loss-of-function” 

as the “mutation consequence” and “mono-allelic” for the “allelic requirement” in 

the DDG2P gene list (Table S13). 

Interestingly, for eight of the 12 genes for which mutations are known to cause ID/

DD and for which we identified mutation clustering, the disease mechanism on 

the constructed gene list was reported to be NHI. For these eight genes, it is either 

gain-of-function or dominant negative, thereby showing statistical enrichment for 

NHI mechanisms (p=2.66E-03, Fisher’s exact test; Table S14 and S15). For two of 

the three remaining genes (GRIN2B [MIM:138252] and SMAD4 [MIM: 600993]) both 

HI and NHI consequences have been reported,139–142 suggesting that for mutations 

in these genes more complex genotype-phenotype relations might exist, where HI 

and NHI mechanisms cause clinically distinct ID/DD-related disorders. For KCNQ2 

(MIM: 602235), the reported mutational mechanism is HI although a literature 

search also revealed cases with dominant-negative effects.143 We also investigated 

the extent of the evidence for NHI mechanisms and found that extensive functional 

work of mutations supporting NHI mechanisms has been previously published for 

eight of the 12 known genes (Table S11).

Further we hypothesized that NHI genes should be depleted for truncating  

mutations in individuals with ID/DD, i.e. mutations resulting in premature 

translation termination, whereby the mRNA is targeted for nonsense mediated 

decay. In our initial analyses focusing on de novo missense mutations only, we 

excluded truncating mutations from our dataset. Retrospectively, we searched 

for truncating DNMs in the 15 identified genes with clustering de novo missense 

mutations. We found only three predicted truncating mutations in two of 15 genes, 

which is significantly less than expected based on the total number of DNMs found 

in the total cohort for all HI genes (p˂1.00e-05; Permutation test). 
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We have previously hypothesized that genes with mutations acting through 

NHI mechanisms might be more intolerant to normal variation than genes 

with mutations acting though a HI mechanism for ID/DD.70 To test for tolerance 

to variation, existing scores like pLI50 are not useful as these capture tolerance 

to mRNA truncating variation rather than tolerance to variation in general. 

Therefore, we measured tolerance to variation as the ratio of missense over 

synonymous variation ‘dN/dS’, which has been used by us and others previously for 

predicting disease genes.10,59,84 We downloaded all PASS-filtered single nucleotide 

variants (SNVs) from ExAC (n=9,035,134) and constructed a ‘dN/dS’ measure by 

counting the unique missense SNVs missenseobs, and the unique synonymous 

SNVs synonymousobs, while correcting for sequence composition using the total 

possible unique missense and synonymous SNVs (missensebg and synonymousbg 

respectively)(Table S16): 

 

Based on calculations of these scores for the sets of 116 NHI, and 183 HI genes, 

we indeed find that genes with mutations acting through a NHI mechanism are 

significantly more intolerant to missense variation than genes with mutations 

acting though a HI mechanism (p=2.24e-03; permutation test, Figure 2). In line with 

our hypothesis, also our set of 15 genes with clustered DNMs was significantly less 

tolerant to missense variation compared to the set of 183 genes with mutations 

acting through a HI mechanism (p=8.45e-03; permutation test, Figure 2). 



Chapter 4

86

Figure 2. Intolerance to Missense Variation

Violin plots show the distribution of the gene-based dN/dS (y axis) per gene set (x axis). The median 
dN/dS is indicated by a red horizontal line. The NHI genes are more intolerant to missense variation 
than HI genes (HI genes median: 0.460; NHI genes median: 0.428; p = 2.24e-03). In addition, the 
identified genes with clustering mutations are more intolerant to missense variation than HI genes 
(genes with clustering mutations median: 0.352; p = 8.45e-03).

▶Figure 3. Examples of Modeling of Missense Mutations on 3D Protein Structures

Wild-type residues are marked in blue; de novo mutations are indicated as red globes or lines 
(Tables S17).

A. 3D structure of GNA1, acting through HI, showing that the modeled missense mutations are 
buried and likely to disrupt protein folding.

B. Structure of PPP2R5D, acting through NHI, where the modeled missense mutations affect 
mostly surface residues and are expected to have no or only local structural effects.

C. Zoom-in of known missense variants p.Arg496Cys and p.Ile500Val in SMAD4 known to act 
through a gain-of-function mechanism. These variants are located on the surface of the monomer 
and in contact with another SMAD4 monomer.141

D. Zoom-in of the missense variant p.Gly343Arg in ACTL6B which is located at the surface. The 
side-chain points toward the solvent, therefore the larger Arginine will fit.

E. Zoom-in of the missense variant p.Pro65Leu in PCGF2 close to the interaction site with other 
molecules.
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Modeling of missense mutations in a 3D protein structure is helpful to gain 

more insight into the possible structural and functional effects.144 Conceptually, 

mutations in the core of the protein structure are more likely to prevent proper 

folding than mutations on the protein surface.145 The impact of a surface change 

however depends entirely on the spatial context and is therefore less likely to 

result in misfolding and subsequent protein degradation.146 Consequently, de 

novo disease-causing missense mutations preventing proper folding cause protein 

degradation, and thus indirectly lead to HI, similar to protein truncating mutations 

in such genes. To test the hypothesis that our clustered de novo missense mutations 

do not generally result in HI due to protein misfolding we modeled mutations onto 

the 3D protein structure using YASARA & WHAT IF Twinset.14,147 A (partial) protein 

3D structure was available or could be created via homology modeling for 10 of 

the 15 identified genes. We assessed 48 missense mutations on the 3D structure 

(i.e. buried, at the surface, or semi-buried) and whether the mutation was likely to 

affect protein folding (no effect, local effect, or large effect; Figure 3, Table S17). 

To compare the results of 3D modeling of clustered mutations, we also modeled 

75 de novo disease-causing missense mutations in 25 genes with mutations acting 

though HI (Table S13) for which a structure was available (Table S17). For the 

HI genes, 42% of missense mutations were buried and 34% of mutations were 

located at the protein surface. In the 10 genes for which a mutational NHI effect 

is proposed, only 11% of mutations was buried whereas 61% was located at the 

protein surface (p=1.26E-03, chi-square test; Table S17). Even more strikingly, only 

19% of the clustering de novo missense mutations were likely to result in a large 

structural change that would affect protein function whereas this was observed 

for 63% of de novo missense mutations in HI genes (p = 8.43E-06, chi-square test). 

These results support the notion that the majority of clustered de novo disease-

causing missense mutations do not result in haploinsufficiency at the protein 

structure level, but enact their effect through other mechanisms. Possibly this 

could be through the functional impairment of protein-protein interactions, as we 

noted that two of the three candidate ID/DD genes require complex formation or 

joining of protein subunits (e.g. multimerisation) to be functional (Table 2).

In conclusion, we developed a method for the identification of disease genes based 

on the significance of spatial mutation clustering within a gene. We show that our 

method successfully identifies genes previously implicated in ID/DD. Moreover, 
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we identified three genes with similar clustering patterns that we propose as 

candidate ID/DD genes. Our findings support the concept that these mutations 

mostly exert their pathogenic effect through disease mechanisms other than 

haploinsufficiency. Thus, our findings might indicate a larger contribution of non-

haploinsufficient mechanisms to ID/DD than previously thought.
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Supporting Information
All supplementary information can be found online with the published article at 

https://doi.org/10.1016/j.ajhg.2017.08.004
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Abstract
De novo mutations in protein-coding genes are a well-established cause of 

developmental disorders.114 However, genes known to be associated with 

developmental disorders account for only a minority of the observed excess of 

such de novo mutations.114,148 Here, to identify previously undescribed genes 

associated with developmental disorders, we integrate healthcare and research 

exome-sequence data from 31,058 parent–offspring trios of individuals with 

developmental disorders, and develop a simulation-based statistical test to 

identify gene-specific enrichment of de novo mutations. We identified 285 genes 

that were significantly associated with developmental disorders, including 28 

that had not previously been robustly associated with developmental disorders. 

Although we detected more genes associated with developmental disorders, 

much of the excess of de novo mutations in protein-coding genes remains 

unaccounted for. Modelling suggests that more than 1,000 genes associated with 

developmental disorders have not yet been described, many of which are likely 

to be less penetrant than the currently known genes. Research access to clinical 

diagnostic datasets will be critical for completing the map of genes associated with 

developmental disorders.
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It has previously been estimated that around 42–48% of patients with a severe 

developmental disorder (DD) have a pathogenic de novo mutation (DNM) in a 

protein-coding gene.114,148 However, most of these patients remain undiagnosed 

despite the identification of hundreds of DD-associated genes. This indicates that 

there are more DD-relevant genes to find. Existing methods to detect the gene-

specific enrichment of damaging DNMs do not incorporate all of the available 

information about which variants are more likely to be disease-associated; 

missense variants and protein-truncating variants (PTVs) vary in their impact on 

protein function.11,29,149,150 Known dominant DD-associated genes are strongly 

enriched in the minority of genes that exhibit strong selective constraint on 

heterozygous PTVs.50 To identify additional DD-associated genes, we need to 

increase our power to detect gene-specific enrichments of damaging DNMs by 

both increasing sample sizes and improving our statistical methods. In previous 

studies of pathogenic copy number variations, the use of healthcare data has 

been key to achieve larger sample sizes than would be possible in a research 

setting alone.151,152

Identification of 285 DD-associated genes
Following clear consent practices and only using aggregate, deidentified data, we 

pooled DNMs from patients with a DD from three centres: GeneDx (a US-based 

diagnostic testing company), the Deciphering Developmental Disorders study 

and Radboud University Medical Center. We performed stringent quality control 

on variants and samples to obtain 45,221 coding and splicing DNMs in 31,058 

individuals (Supplementary Fig. 1; Supplementary Table 1), including data 

on 24,348 trios that have not previously been published. These DNMs included 

40,992 single-nucleotide variants (SNVs) and 4,229 insertions or deletions (indels). 

The three cohorts have similar clinical characteristics, male-to-female ratios, 

enrichments of DNMs by mutational class and prevalences of known disorders 

(Supplementary Fig. 2). 

To detect gene-specific enrichments of damaging DNMs, we developed a 

method named DeNovoWEST (De Novo Weighted Enrichment Simulation Test, 

https://github.com/queenjobo/DeNovoWEST). DeNovoWEST scores all classes 

of sequence variants on a unified severity scale based on empirically estimated 

positive predictive values of being pathogenic (Supplementary Fig. 3, 4). We 

perform two tests per gene: an enrichment test on all nonsynonymous DNMs 
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and a test designed to detect genes that probably act through an altered-function 

mechanism, which combines a missense enrichment test with a missense clustering 

test. We then applied a Bonferroni multiple-testing correction accounting for the 

number of genes (n = 18,762) and two tests per gene.

We first applied DeNovoWEST to all individuals in our cohort and identified 281 

significantly enriched genes, 18 more than when using our previously published 

method114 (Figure 1a; Supplementary Fig. 5). The majority (196 out of 281; 70%) of 

the significantly enriched genes already had sufficient evidence of an association 

with DDs to be considered of diagnostic utility (as of late 2019) by all three centres, 

and we refer to these genes as ‘consensus’ genes. A further 54 out of 281 of the 

significantly enriched significant genes were previously considered diagnostic by 

one or two centres (‘discordant’ genes). Applying DeNovoWEST to synonymous 

DNMs, as a negative control analysis, identified no significantly enriched genes 

(Supplementary Fig. 6). 

To discover novel DD-associated genes with greater power, we applied 

DeNovoWEST to DNMs in patients without damaging DNMs in consensus genes 

(we refer to this subset as ‘undiagnosed’ patients) and identified 94 significant 

genes (Supplementary Fig. 7; Supplementary Table 2), of which 33 were 

putative ‘novel’ DD-associated genes. To ensure robustness to potential mutation 

rate variation between genes, we determined whether any of the putative novel 

DD-associated genes had significantly more synonymous variants in the Genome 

▶Figure 1: Results of DeNovoWEST analysis. A. Comparison of P values using DeNovoWEST 
versus the previous published method (mupit),114 run on the full cohort. Dashed lines indicate 
the threshold for genome-wide significance (one-sided, Bonferroni correction). Point size is 
proportional to the number of nonsynonymous DNMs in our cohort. The number of genes that 
fall into each quadrant are annotated. B. The number of missense and PTV DNMs in the novel 
genes. Point size is proportional to the –log10 (P) value of the analysis of the undiagnosed subset. 
Point colour corresponds to which test P value was more significant: blue, the nonsynonymous 
enrichment test (pEnrich); red, the missense enrichment and clustering test (pMEC). H3-3A is also 
known as H3F3A. C. The distribution of significant P values from analysis of the undiagnosed 
subset for discordant and novel genes; P values for consensus genes come from the full cohort 
analysis. The number of genes in each P-value bin is coloured by diagnostic gene group (n = 285 
significant genes; one-sided Bonferroni-corrected P values). D. The fraction of patients (n = 31,058) 
with a nonsynonymous mutation in each diagnostic gene group. Green, the remaining fraction 
of patients (the offspring of the parent–offspring trios) expected to have a pathogenic de novo 
coding mutation; grey, the fraction of patients that are likely to be explained by other factors. E. 
The fraction of patients with a nonsynonymous mutation in each diagnostic gene group split by 
sex (n = 13,636 female patients; n = 17,422 male patients). In all panels, black, blue and orange 
represents consensus, discordant and novel genes, respectively.
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Aggregation Database (gnomAD)51 of population variation than expected under 

our null mutation model. We identified 11 out of 33 genes with a significant excess 

of synonymous variants. For these 11 genes, we repeated the DeNovoWEST 

test, increasing the null mutation rate by the ratio of observed to expected 

synonymous variants in gnomAD. Five of these genes fell below our exome-wide 

significance threshold and were removed, leaving 28 novel genes, with a median 

of 10 nonsynonymous DNMs (Fig. 1c; Supplementary Table 3). There were 314 

patients with nonsynonymous DNMs in these 28 genes (1.0% of our cohort); all of 

these DNMs were inspected in the Integrative Genomics Viewer (IGV)153 and, of the 

198 patients for which experimental validation was attempted, all variants were 

confirmed to be DNMs. The DNMs in these novel genes were distributed randomly 

across the three datasets (no genes with P < 0.001, heterogeneity test). In addition, 

6 of the 28 novel DD-associated genes were corroborated by OMIM entries or 

publications, including TFE3, which was described in two recent publications.154,155

We also investigated whether some of the synonymous DNMs might be pathogenic 

by disrupting splicing. We identified a small but significant enrichment of 

synonymous DNMs with high values of the splicing pathogenicity score SpliceAI156 

(≥ 0.8, 1.56-fold enriched, P = 0.0037, Poisson test; Supplementary Table 4). This 

enrichment corresponds to an excess of around 15 splice-disrupting synonymous 

DNMs in our cohort, of which 6 are accounted for by a recurrent synonymous 

DNM in KAT6B that is known to disrupt splicing.157

Taken together, 25.0% of our cohort has a nonsynonymous DNM in one of the 

consensus or significant DD-associated genes (Fig. 1d We noted significant sex 

differences in the autosomal burden of nonsynonymous DNMs (Supplementary 
Fig. 8). The rate of nonsynonymous DNMs in consensus autosomal genes was 

significantly higher in female individuals than male individuals (OR = 1.16, P = 4.4 x 

10-7, Fisher’s exact test; Fig. 1e), as noted previously.114 However, the exome-wide 

burden of autosomal nonsynonymous DNMs in all genes was not significantly 

different between undiagnosed male and female participants (OR = 1.03, P = 0.29, 

Fisher’s exact test). This indicates that there are subtle sex differences in the genetic 

architecture of DDs, especially with regard to known and undescribed disorders. 

This could include sex-biased contributions of polygenic, oligogenic and/or 

environmental modifiers of phenotypic variation and thus clinical ascertainment.
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Characteristics of the novel DD-associated genes
Based on semantic similarity158 between human phenotype ontology terms, 

patients with DNMs in the same novel DD-associated gene were less phenotypically 

similar to each other, on average, than patients with DNMs in a consensus gene 

(P = 2.3 x 10-11, Wilcoxon rank-sum test; Fig. 2a and Supplementary Fig. 9). This 

suggests that these novel disorders less often result in distinctive and consistent 

clinical presentations, which may have made these disorders more difficult to 

discover using a phenotype-driven approach. Each of these novel disorders 

requires genotype–phenotype characterization, which is beyond the scope of this 

study. 

Overall, novel DD-associated genes encode proteins that have very similar functional 

and evolutionary properties to consensus genes (Fig. 2b; Supplementary Table 
5). Despite the high-level functional similarity between known and novel DD-

associated genes, nonsynonymous DNMs in the more recently described DD-

associated genes are much more likely to be missense DNMs, and less likely to 

be PTVs (discordant and novel; P = 1.2 x 10-25, chi-squared test). Of the 28 novel 

genes, 15 (54%) had only missense DNMs. As a consequence, we expect that the 

effects of a greater proportion of the novel genes act through altered-function 

mechanisms 

Figure 2: Properties of the novel genes. A. The phenotypic similarity of patients with DNMs in 
novel and consensus genes. Random phenotypic similarity was calculated from random pairs of 
patients. Patients with DNMs in the same novel gene were less phenotypically similar than patients 
with DNMs in the same consensus gene P = 2.3 x 10-11, Wilcoxon rank-sum test). B. Comparison of 
properties of consensus (n = 380) and novel (n = 28) DD-associated genes known to be differential 
between consensus and non-DD-associated genes (95% bootstrapped confidence intervals are 
shown). GO, Gene Ontology; GERP, genomic evolutionary rate profiling; RPKM, reads per kilobase 
of transcript per million mapped reads; CDS, coding sequence; dN/dS, the ratio of substitution rate 
at nonsynonymous and synonymous sites.
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(for example, as dominant-negative or gain-of-function disorders). For example, 

the novel gene PSMC5 (DeNovoWEST P = 2.6 × 10−15) had one in-frame deletion 

and nine missense DNMs, eight of which altered two structurally important amino 

acids in the AAA+ ATPase domain; the effect of PSMC5 alterations are therefore 

probably generated through an altered-function mechanism (Supplementary Fig. 
10 a, b). None of the novel genes exhibited significant clustering of de novo PTVs.

We observed that missense DNMs were more likely to affect functional protein 

domains than other coding regions. We observed a 2.63-fold enrichment (P = 2.2 x 

10-68, G-test) in missense DNMs that reside in protein domains among consensus 

genes and a 1.80-fold enrichment (P = 8.0 x 10-5, G-test) in novel DD-associated 

genes, but no enrichment in synonymous DNMs (Supplementary Table 6). 

Four protein domain families in consensus genes were enriched in missense 

DNMs (Supplementary Table 7): ion transport protein (PF00520, P = 6.9 x 10-

4, Bonferroni-corrected G-test), ligand-gated ion channel (PF00060, P = 4.0 x 10-

6), and protein kinase domain (PF00069, P = 0.043) and kinesin motor domain 

(PF00225, P = 0.027). Missense DNMs in all four enriched domain families have 

previously been associated with DDs (Supplementary Table 8).159–161

We observed a significant overlap between the 285 DNM-enriched DD-associated 

genes and a set of 369 previously described cancer-driving genes162 (overlap of 70 

genes; p = 1.7 x 10-49, logistic regression correcting for selection on heterozygous 

PTVs (shet)), as observed previously,163,164 as well as a significant enrichment in 

nonsynonymous DNMs in both overlapping and non-overlapping cancer genes 

(Supplementary Table 9). We observe 117 DNMs in 76 recurrent somatic mutations 

that were observed in at least three patients in The Cancer Genome Atlas (TCGA).165 

By modelling the germline mutation rate of these somatic driver mutations, we 

found that recurrent nonsynonymous mutations in the TCGA are enriched 21-fold 

in our cohort (p < 10-50, Poisson test, Supplementary Fig. 11), whereas recurrent 

synonymous mutations in the TCGA are not significantly enriched (2.4-fold, p = 

0.13, Poisson test). These results suggest that this observation is driven by the 

pleiotropic effects of these mutations in development and tumorigenesis, rather 

than because of hypermutability of these variants.
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Recurrent mutations
We identified 773 recurrent DNMs (736 SNVs and 37 indels), observed in 2–36 

individuals, which enabled us to systematically interrogate the factors that drive 

recurrent germline mutations. We considered three potential contributory factors: 

(1) clinical ascertainment that enriches for pathogenic mutations; (2) greater 

mutability at specific sites; and (3) positive selection that confers a proliferative 

advantage in the male germline.166 We observed evidence that all three factors 

contributed to the occurrence of recurrent germline mutations; however, these 

factors are not mutually exclusive. Clinical ascertainment drives the observation 

that 65% of recurrent DNMs were in consensus genes, a 5.4-fold enrichment 

compared with DNMs that were observed only once (p < 10-50, proportion test). 

Hypermutability underpins the observation that 64% of recurrent de novo SNVs 

occurred at hypermutable CpG dinucleotides,167 a 2.0-fold enrichment over DNMs 

that were observed only once (p = 3.3 x 10-68, chi-squared test).

Positive germline selection can increase the apparent mutation rate more 

strongly166 than either clinical ascertainment (10-100X in our dataset) or 

hypermutability (around 10× for CpGs). However, only a minority of the most 

highly recurrent mutations in our dataset are in genes that have been previously 

associated with germline selection. Nonetheless, several lines of evidence 

suggested that the majority of these most highly recurrent mutations are likely 

to confer a germline selective advantage. On the basis of the observations above, 

DNMs under germline selection should be more likely to be activating missense 

mutations, and should be less enriched for CpG dinucleotides. Extended Data 
Table 1 shows the 16 de novo SNVs that were observed 9 or more times in our 

cohort, only 2 of which are in known germline selection genes. All but 2 of these 

16 de novo SNVs cause missense changes, all but 2 of these genes cause disease 

by an altered-function mechanism, and these DNMs were depleted for CpGs 

relative to all recurrent mutations. Two of these genes with highly recurrent de 

novo SNVs, in SHOC2 and PPP1CB, which encode interacting proteins that regulate 

the RAS–MAPK pathway; pathogenic variants in these genes are associated with a 

Noonan-like syndrome.168 Moreover, two of these recurrent DNMs are in the same 

gene (SMAD4), which encodes a key component of the TGFβ signalling pathway, 

potentially expanding the pathophysiology of germline selection beyond the RAS–

MAPK pathway. Confirming germline selection of these mutations will require 

deep sequencing analyses of the testes and/or sperm.169
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Extended Data Table 1. De novo SNVs with more than nine recurrences in our cohort annotated 
with relevant information, such as CpG status, whether the affected gene is a known somatic 
driver or germline-selection gene, and diagnostic gene group (for example, consensus). ‘Recur’ 
refers to the number of recurrences. ‘Likely mechanism’ refers to the mechanisms attributed to 
this gene in the published literature. 

Incomplete penetrance and pre- or perinatal death
Nonsynonymous DNMs in consensus or significant DD-associated genes accounted 

for half of the exome-wide nonsynonymous DNM burden associated with DD (Fig. 
1b). Despite our identification of 285 significantly DD-associated genes, there 

remains a substantial burden of both missense and protein-truncating DNMs in 

unassociated genes (those that are neither significant in our analysis nor on the 

consensus gene list). This residual burden of protein-truncating DNMs is greatest 

in genes that are intolerant to PTVs in the general population (Supplementary 
Fig. 12), which suggests that many haploinsufficient disorders have not yet been 

described. We observed that PTV mutability (estimated from a null germline 

mutation model) was significantly lower in unassociated genes compared with 

DD-associated genes (p = 4.5 x 10-68 Wilcox rank-sum test; Fig. 3a), which leads 

to reduced statistical power to detect DNM enrichment in unassociated genes, 

consistent with our hypothesis that numerous haploinsufficient disorders have 

not yet been identified.

A key parameter in estimating statistical power to detect novel haploinsufficient 

disorders is the fold enrichment of de novo PTVs expected in undescribed 

haploinsufficient disorders. We observed that novel DD-associated haploin-
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Figure 3: Factors that influence power to detect DD-associated genes. 

A. PTV mutability is significantly lower (p = 4.6 x 10-68, two-sided Wilcox rank-sum test) in genes 
that are not significantly DD-associated (blue) than in DD-associated genes (red). Median is shown 
as a black horizontal line. bp, base pairs. B. Distribution of PTV enrichment in significant, likely 
haploinsufficient genes by category (118 consensus, 23 discordant and 8 novel genes). Lower 
and upper hinges correspond to first and third quartiles. Median is shown by a horizontal grey 
line. The upper and lower whiskers extend 1.5× the interquartile range. C. Comparison of PTV 
enrichment in our cohort compared with the PTV to synonymous (syn) ratio in gnomAD, for genes 
that are significantly PTV-enriched in our cohort (without variant weighting; n = 156 genes). PTV 
enrichment bins are calculated as log10 (enrichment). The dashed line shows the regression line. 
Confidence intervals are the 95% intervals of the rate ratio. d, Overall PTV enrichment across 
genes grouped by the likelihood of individuals showing a structural malformation on a prenatal 
ultrasound (145 low, 65 medium, 6 high genes). PTV enrichment is significantly higher for genes 
with a low likelihood compared to other genes (p = 4.6 x 10-5, two-sided Poisson test). Poisson 95% 
confidence intervals are shown.

sufficient genes had significantly lower PTV enrichment compared with the 

consensus haploinsufficient genes (p = 0.005, Wilcoxon rank-sum test; Fig. 3b). Two 

additional factors that could lower DNM enrichment, and thus the power to detect 

a novel DD association, are reduced penetrance and increased pre- or perinatal 

death (due to spontaneous fetal loss, termination of pregnancy because of a fetal 

anomaly, stillbirth or early neonatal death). To evaluate incomplete penetrance, 

we investigated whether haploinsufficient genes with a lower enrichment of de 

novo PTVs in our cohort are associated with a greater prevalence of PTVs in the 

general population. We observed a significant negative correlation (p = 0.031, 
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weighted linear regression) between PTV enrichment in our cohort and the ratio 

of PTV to synonymous variants in gnomAD149, which suggests that incomplete 

penetrance does lower de novo PTV enrichment in our cohort (Fig. 3c).

Additionally, we observed that the fold enrichment of de novo PTVs in consensus 

haploinsufficient DD-associated genes in our cohort was significantly higher 

for genes with a low likelihood of presenting with a structural malformation of 

the fetus during prenatal screening (p = 4.6 x 10-5, Poisson test, Fig. 3d), which 

indicates that pre- or perinatal death decreases our power to detect some of the 

novel disorders (see Supplementary Information for details).

Hundreds of DD genes have not yet been discovered
Downsampling of our cohort and repeating enrichment analyses showed that 

the discovery of DD-associated genes has not plateaued (Extended Data Fig. 
1a). Increasing the sample size should result in the discovery of many novel DD-

associated genes. To estimate how many haploinsufficient genes have not yet been 

described, we modelled the likelihood of the observed distribution of de novo PTVs 

among genes as a function of varying numbers of undiscovered haploinsufficient 

DD-associated genes and fold enrichments of de novo PTVs in those genes. We 

found that the remaining PTV burden is most likely spread across around 1,000 

genes with an approximately 10-fold PTV enrichment (Extended Data Fig. 1b). 

This fold enrichment is three times lower than in known haploinsufficient DD-

associated genes, which suggests that incomplete penetrance and/or pre- or 

perinatal death is more prevalent among undiscovered haploinsufficient genes. 

We modelled the missense DNM burden separately and also observed that 

the most likely architecture of undiscovered DD-associated genes is one that 

comprises more than 1,000 genes with a substantially lower fold enrichment than 

in currently known DD-associated genes (Supplemental Fig. 13). 

We calculated that a sample size of around 350,000 parent–offspring trios would 

be needed to have 80% power to detect a tenfold enrichment of de novo PTVs 

for an average gene. Using this inferred tenfold enrichment among undiscovered 

haploinsufficient genes, from our current data we can evaluate the likelihood that 

any gene i is an undiscovered haploinsufficient gene, by comparing the likelihood 

of the number of de novo PTVs observed in each gene to have arisen from the 

null mutation rate or from a tenfold increased PTV rate. Among the approximately 
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19,000 non-DD-associated genes, around 1,200 were more than three times more 

likely to have arisen from a tenfold increased PTV rate, whereas approximately 

7,000 were three times more likely to have no de novo PTV enrichment.

Extended Data Fig. 1 Exploring the remaining number of DD genes.

a, Number of significant genes after downsampling the full cohort and running the enrichment 
test of DeNovoWEST. b, The likelihood of the observed distribution of de novo PTV mutations 
was modelled. This model varies the numbers of remaining haploinsufficient (HI) DD genes and 
PTV enrichment in those remaining genes. The 50% credible interval is shown in red and the 
90% credible interval is shown in orange. Note that the median PTV enrichment in genes that 
are significant and known to operate through a loss-of-function mechanism (as indicated by an 
arrow) is 39.7.

Discussion
Here we describe 28 novel developmental disorders by developing an improved 

statistical test for mutation enrichment and applying it to a dataset of exome 

sequences from 31,058 parent–offspring trios. Most of the increased power to 

detect novel disorders comes from the increase in sample size, rather than the 

improved statistical test. These 28 novel genes account for 1.0% of our cohort, and 

their inclusion in diagnostic workflows will help to improve diagnosis of similar 

patients globally. The value of this study for improving diagnostic yield extends 

beyond these 28 novel genes; the total number of genes added to diagnostic 

workflows of the three participating centres (including newly validated discordant 

genes) ranged from 48 to 65 genes. We show that both incomplete penetrance 

and pre- or perinatal death reduced our power to detect novel DDs postnatally, 

and hypothesize that one or both of these factors are operating more strongly 

among undiscovered DD-associated genes. In addition, we identify a set of highly 
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recurrent mutations that are strong candidates for novel germline selection 

mutations, which should result in a higher than expected disease incidence that 

increases markedly with increased paternal age.

Our study is approximately three times larger than a recent meta-analysis of DNMs 

from a collection of individuals with autism spectrum disorder, intellectual disability 

and/or a developmental disorder.170 We identified around 2.3 times as many 

significantly DD-associated genes as this previous study when using Bonferroni-

corrected exome-wide significance (285 compared with 124). In contrast to meta-

analyses of published DNMs, the harmonized filtering of candidate DNMs across 

cohorts in this study should be more robust to cohort-specific differences in the 

sensitivity and specificity of detecting DNMs.

We inferred indirectly that developmental disorders with higher rates of 

detectable prenatal structural abnormalities had a greater likelihood of pre- 

or perinatal death. The potential size of this effect can be quantified from the 

recently published PAGE study of genetic diagnoses in a cohort of fetal structural 

abnormalities.171 In the PAGE study, genetic diagnoses were not returned to 

participants during the pregnancy, and so genetic diagnostic information could 

not influence the incidence of pre- or perinatal death. In the PAGE study data, 

69% of fetal abnormalities with a genetically diagnosable cause died perinatally 

or neonatally. This emphasizes the substantial effect that pre- or perinatal death 

can have on reducing the ability to discover novel DDs from postnatal recruitment 

alone, and motivates the integration of genetic data from prenatal, neonatal and 

postnatal studies in future studies.

To empower our mutation enrichment testing, we estimated positive predictive 

values that each DNM was pathogenic on the basis of their predicted protein 

consequence, CADD score,29 selective constraint against heterozygous PTVs across 

the gene (shet
172), and, for missense variants, presence in a region under selective 

missense constraint.11 These positive predictive values should also be informative 

for variant prioritization in the diagnosis of dominant developmental disorders. 

Further work is needed to investigate whether these positive predictive values 

could be informative for recessive developmental disorders, and in other types of 

dominant disorders. More generally, we hypothesize that empirically estimated 

positive predictive values based on variant enrichment in large datasets will be 

similarly informative in many other disease areas.
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We adopted a conservative statistical approach to identifying DD-associated 

genes. In two previous studies using the same significance threshold, we identified 

26 novel DD-associated genes.109,114 All 26 are now regarded as being diagnostic, 

and have entered routine clinical diagnostic practice. Had we used a significance 

threshold with a false-discovery rate of <10% as used previously,173 we would 

have identified 770 DD-associated genes. The false-discovery rate of individual 

genes depends on the significance of other genes being tested, which means that 

it is not appropriate for assessing the significance of individual genes, but can be 

useful for defining gene sets. There are 184 consensus genes that did not cross 

our significance threshold in this study. It is likely that many of these genes cause 

disorders that were underrepresented in our study due to the ease of clinical 

diagnosis on the basis of distinctive clinical features or targeted diagnostic testing. 

These ascertainment biases will not affect the representation of novel DDs in our 

cohort.

Our modelling suggests that there are probably more than 1,000 DD-associated 

genes that remain to be discovered, and that reduced penetrance and pre- or 

perinatal death will reduce our power to identify these genes using DNM 

enrichment. Identifying these genes will require both improved analytical methods 

and greater sample sizes. As sample sizes increase, accurate modelling of gene-

specific mutation rates becomes more important. In our analyses of 31,058 trios, 

we observed evidence that mutation rate heterogeneity among genes can lead 

to overestimation of the statistical significance of mutation enrichment based on 

an exome-wide mutation model. We advocate the development of more granular 

mutation rate models, based on large-scale population variation resources, that 

correct for all technical and biological complexities, to ensure that larger studies 

are robust to mutation rate heterogeneity.

We anticipate that the variant-level weights used by DeNovoWEST will improve 

over time. As reference population samples, such as gnomAD,149 increase in 

size, weights based on selective constraint metrics (for example, shet or regional 

missense constraint) will improve. Weights could also incorporate more functional 

information, such as expression in disease-relevant tissues. For example, we 

observe that DD-associated genes are significantly more likely to be expressed 

in the fetal brain (Supplementary Fig. 14). Furthermore, new metrics based on 

gene co-regulation networks can predict whether genes function within a disease-

relevant pathway.174 As a cautionary note, including more functional information 
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may increase power to detect some new disorders while decreasing power for 

disorders with a pathophysiology that is different from known disorders. Our 

analyses also suggest that variant-level weights could be further improved by 

incorporating other variant prioritization metrics, such as upweighting variants 

predicted to affect splicing, variants in particular protein domains or variants that 

are somatic driver mutations during tumorigenesis. In developing DeNovoWEST, 

we explored the application of both variant-level weights and gene-level weights 

in separate stages of the analysis; however, subtle but pervasive correlations 

between gene-level metrics (for example, shet) and variant-level metrics (for 

example, regional missense constraint or CADD) present statistical challenges 

to implementation. Finally, the discovery of less penetrant disorders can be 

empowered by analytical methodologies that integrate both DNMs and rare 

inherited variants, such as TADA.175 Nonetheless, using current methods focused 

on DNMs alone, we estimated that around 350,000 parent–child trios would need 

to be analysed to have around 80% power to detect haploinsufficient genes with 

a tenfold PTV enrichment. Discovering non-haploinsufficient disorders will need 

even larger sample sizes. Reaching this number of sequenced families will not be 

possible for an individual research study or clinical centre; it is therefore essential 

that genetic data generated as part of routine diagnostic practice are shared 

with the research community such that it can be aggregated to drive discovery of 

previously undescribed disorders and improve diagnostic practice.
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Abstract
Variant interpretation remains one of the major challenges in medical genetics. 

Previously we showed how genetic variation, when aggregated over homologous 

protein domains, help interpret variants of unknown significance. Here, we 

created the Meta-Domain HotSpot (MDHS) p-value to identify mutation hotspots 

in homologous domains. The MDHS p-value was used to identify hotspots of de 

novo mutations (DNMs) in a dataset of 45,221 DNMs from 31,058 patients with 

developmental disorders (DDs). Of these, 15,392 DNMs locate to evolutionary 

equivalent positions in protein domain regions across 6,910 genes.The MDHS 

p-value identified three missense DNM hotspots, and no hotspots for synonymous 

or nonsense DNMs. All missense DNM hotspots are in the ion transport protein 

domain family (PF00520). The 57 missense DNMs driving enrichment result from 

25 genes, of which 19 were previously associated to DDs. Function altering disease-

mechanisms have been described for some of the DNMs at these hotspots in 

literature. 3D Protein structure modelling of the 25 genes consistently confirmed 

the same function of the native residues at each of these hotspots. One hotspot 

is located at the ion channel gate and the other two at voltage-sensing positions 

critical for the in/activation of the ion channel. Therefore all DNMs at these 

hotspots are function-altering and likely pathogenic. Six genes (CACNA1B, TPCN1, 

TPCN2, KCNH5, KCNG1, and TRPM5) are now suggested as new candidate genes for 

DD based on DNMs at these hotspots. In conclusion, we show a novel approach to 

identify candidate disease genes based on homologous protein domain mutation 

hotspots.
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Introduction
De novo mutations (DNMs) in protein-coding genes are an established cause for 

developmental disorders (DDs).176 An estimated 2-5% of all children are born 

with severe DDs in the form of congenital malformations or neurodevelopmental 

disorders.177,178 Of these, ~42-48% are caused by a DNM in a protein-coding 

gene.114,148 On average, any individual has about 1-2 DNMs in protein-coding 

regions.59 Statistical models use this to identify DNM enrichment in patient 

cohorts that point to candidate disease-causing genes. These efforts have 

resulted in a growing number of genes that are now associated with DD, and has 

led to the publication of a growing collection of DNMs from patient cohorts with 

DDs.109,114,120,128,179 Nevertheless, DD-association of genes has far from saturated 

and over 1,000 DD-associated genes are expected to await discovery.179 To 

continue DD-association this way, larger and larger cohorts are required

The largest cohort of 31,058 patients with DDs was recently published in a study 

by Kaplanis et al. This enabled novel DD-association for 28 genes. Remarkably, 15 

of these genes were enriched by missense mutations only, suggesting that these 

genes may not act through a classical mechanism of haploinsufficiency. This could 

partly explain the difficulties in identifying novel DD genes, since the decreased 

mutational target would give rise to fewer patients with mutations in these genes, 

than would be expected if these genes were to act through haploinsufficiency. 

Non-haploinsufficient DD genes can be identified by mutation clustering patterns 

in particular gene regions.104,113 However, DNMs are rare and therefore these 

methods require large sample sizes to be successful. 

Protein domain regions are of particular interest, because ~71% of curated 

disease-causing missense variants in Human Gene Mutation Database (HGMD)91 

and ClinVar54 occur in protein domains.93 DD-associated missense DNMs are up 

to a 2.63 fold more likely to be found in these regions.179 It has been shown that 

the evolutionary conserved architecture underlying homologous protein domains 

can be used to aggregate genetic variation across the human genome.60,93,180–183 

Disease-causing missense variants aggregated to equivalent protein domain 

positions are depleted of population-based variation and vice versa.93 In addition, 

disease-causing missense variants on identical homologous protein domain 

positions, modelled in yeast, result in similar disease-phenotypic changes.181
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We developed a novel methodology to perform mutation clustering of DNMs 

across homologous protein domains. By aggregating across homologs we increase 

the statistical power to identify mutation clusters. Using this method on DNMs 

from 31,058 patients with DDs and suggest novel disease gene candidates.

Materials and Methods

Dataset of de novo mutations and developmental disorder diagnostic 
gene lists

We obtained all 45,221 DNMs from the Kaplanis et al study.179 These DNMs 

were identified in 31,058 patients with DDs from three centres. The genetic 

testing approach of these patients were described previously per centre: DDD,114 

GeneDX,184 and, Radboudumc.128 All individuals that underwent genetic testing 

provided informed consent.179 Subset of these patients have been analysed and 

reported in previous publications.70,114,184,185 We also make use of the diagnostic 

lists of DD-associated genes from the Kaplanis et al. study, namely the novel 

(n=28), consensus (n=380) and discordant (n=607) diagnostic gene lists.179 

Annotation of transcript details, protein and meta-domain position 
annotation

The DNMs were annotated with corresponding GENCODE63 transcripts from 

release 19 GRCh37.p13 Basic set, protein information from UniProtKB/Swiss-Prot64 

Release 2016_09, Pfam-A41 v30.0 protein domains information, and meta-domain93 

positions using a local version of the MetaDome53 web server (code available 

at https://github.com/cmbi/metadome). Meta-domains are based on multiple 

sequence alignments of parts of human protein-coding genes that correspond 

to Pfam protein domain families. The genetic variants which correspond to 

homologous protein domain positions receive additional annotation of the 

corresponding Pfam domain ID and consensus position.

Filtering the annotated DNMs

The annotation process can result in multiple GENCODE gene transcripts per 

DNM. To ensure a single GENCODE transcript per gene we performed a filtering 

step by the following order of criteria:
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1. Only keep variants that have the following transcript consequence: 

missense, synonymous, or, stop-gained 

2. The transcript corresponds to a human canonical or isoform entry in 

Swiss-Prot

3. This transcript contains all (or most) of the de novo mutations for the 

corresponding gene

4. The transcript translates to the longest protein sequence length

5. If multiple transcripts remain for a gene, one of these is selected

6. Filter variants only to those that are in a Pfam protein domain

Detection of variant hotspots in homologous protein domains

The Pfam domain ID in combination with the consensus position allows for 

aggregation of variants. Using these aggregated variants, we can identify which 

of the meta-domain positions are significantly enriched with variants. For this 

purpose we created the MDHS (Meta-Domain HotSpot) p-value to identify 

mutational hotspots in homologous protein domains defined as follows: 

MDHS p-value (1.)

In the context of meta-domains, n corresponds to the total number of aggregated 

genetic variants for the Pfam domain ID, L is the total number of possible 

consensus positions for a Pfam domain ID, k is the total number of genetic 

variants aggregated at a single consensus position, and, x = k - 1, which depicts the 

chance of finding less then observed genetic variants at the consensus position. 

The MDHS p-value is adapted from the mCluster183 and DS-Score186. In line with 

these methods, variants are assumed to follow a Binomial distribution. We correct 

the MDHS p-value via the Bonferroni method for the total number of Pfam protein 

domain IDs considered. If a Bonferroni corrected MDHS p-value <0.05 we consider 

it as a significant mutational hotspot.

We consider two ways of counting genetic variants to represent variable k in the 

MDHS p-value (Equation 1): an ‘unrestricted mutation count’ and a ‘restricted 

mutation count’ (Figure 1). The unrestricted mutation count would include every 

DNM, even when multiple DNMs occur at exactly the same chromosomal position 
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(i.e. recurrent DNMs). The restricted count considers mutated chromosomal 

positions only once, thereby reducing the impact of recurrent mutations at a 

single position in a gene.

Figure 1. Graphical example of the two ways we count mutations that are aggregated over 
homologous protein domain regions. On the left there are three protein representations of 
hypothetical genes A, B and C with the mutations displayed as red lollipops, the domains as blue 
and white boxes. The white boxes represent domains that are homologous and are extracted 
including their mutations and displayed on the right part of this image as domains A, B, and 
C. The mutations encountered in the domains are aggregated over corresponding homologous 
domain positions. The aggregated mutations are displayed as ‘unrestricted mutation count’, 
which includes all observed mutations. The ‘restricted mutation count’ counts uniquely occurring 
mutation per position. 

Protein 3D structural modelling

We have created structural homology models using YASARA & WHAT IF Twinset14,147 

of the Ion Transport protein domain regions for each of the 25 genes in which a 

DNM missense was located at the identified DNM missense hotspot. The locations 

of each missense DNM present at one of the hotspots have been coloured purple 

in the YASARA scenes and the remainder of the structures are grey (Supp. Data 
S1).
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Results
To identify hotspots of de novo mutations in protein domains, we count DNMs in 

a manner that reduces any mutational gene-bias (Figure 1), which then can be 

used to compute protein domain based positional enrichment (Equation 1) for 

each de novo variant type separately. We first mapped the original 45,221 DNMs 

resulting from 31,058 patients with developmental disorders from the Kaplanis 

et al.179 study onto gene transcripts (Methods). After this mapping, of the original 

DNMs 37,089 single nucleotide variants remained of which 15,322 are located on a 

total of 12,389 meta-domain positions. These 15,322 DNMs resulted from protein 

domain regions of 6,910 protein-coding genes, and these protein domain regions 

consist of 2,311 protein domain families. The distribution of variant types of these 

15,322 DNMs are ~73.7% missense, ~21.1% synonymous, and, ~5.3% stop-gained 

(Supp. Data S2; Supp. Table 1). 

Using all 15,322 DNMs in protein domains the MDHS p-value identified 32 

significant hotspots. These hotspots were enriched by 326 missense DNMs from 

16 protein domain families (Supp. Data S3). There were no synonymous or 

nonsense DNMs driving significant enrichment (Supp. Data S4 & S5). Upon close 

examination, we found 9 of these hotspots to be enriched due to a large numbers 

of DNMs located in a single gene codon. Meaning that gene-specific DNM burdens 

are be picked up via the MDHS method. To reduce the gene-specific DNM burden, 

we further filtered the 32 hotspots with the criteria that the DNMs driving their 

enrichment should span at least two different gene-codons. After this filtering, 

there remain 23 missense DNM hotspots in 12 protein domain families based on 

245 DNMs from 67 genes. Nineteen of these 67 genes were not associated to 

DDs in the Kaplanis et al. study, representing a 2.53-fold enrichment of known 

DD-associated genes (p = 1.26-31 chi-square test; Supp Table 2). This suggests that 

our approach could potentially point to new candidate DD genes. However, as this 

analysis picked up gene-specific DNM burdens, we cannot attribute the DNMs that 

drive hotspot enrichment as purely domain-specific. 

We repeated the hotspot discover analysis with a more restricted way of 

counting the DNMs to reduce gene-specific enrichment patterns being picked up 

(Figure 1). In this restricted counting analysis, the MDHS p-value identifies three 

significant hotspots comprised of 57 missense DNMs from 25 genes (Supp Data 
S6). Strikingly, all three hotspots are located in the Ion Transport protein domain 



Chapter 6

118

family (PF00520) (Figure 2). Again there are no hotspots revealed for synonymous 

and nonsense DNMs. The three significant hotspots are located on the domain 

consensus positions p.96 (10 DNMs, restricted MDHS p = 3.6 x 10-2, 16 DNMs 

unrestricted MDHS p= 1.7 x 10-6), p.102 (13 DNMs, restricted MDHS p = 7.1 x 10-

5, 20 DNMs, unrestricted MDHS p= 1.6 x 10-10), and p.231 (14 DNMs, restricted 

MDHS p = 8.0 x 10-6, 21 DNMs, unrestricted MDHS p= 1.4 x 10-11). The fact that all 

hotspots occur within the same domain family strengthens the hypothesis that 

these positions are likely of functional importance. The Ion Transport protein 

domain family is one of four protein domain families that we previously found 

to be significantly enriched with missense DNMs in genes that are associated to 

DDs.179 Of the 25 genes identified with a missense DNM at a hotspot, 19 were 

listed as diagnostic DD-associated gene in Kaplanis et al. representing a 3.17-fold 

enrichment of known DD-associated genes (p = 1.78 x 10-13 chi-square test; Supp 
Table S3). 

Figure 2. The restricted count distribution of missense DNMs aggregated over the Ion Transport 
protein domain family (PF00520). The total consensus length of this domain is 245 and the sum 
of the restricted count distribution is 350. The significance threshold is displayed as a dotted 
blue line, computed via the MDHS p-value (Equation 1). The bars that exceeded the significance 
threshold are colored in red and represent the mutational hotspots p.96, p.102, and, p.231.

We created 3D protein structure homology models for each of the 25 genes 

(Supp. Data S1). Then we analysed if the missense changes were at functionally 

important positions in the Ion Transport protein domain in each of these 3D 

structures (Supp. Data S7). There is a large 3D protein structural overlap between 

for the Ion transport protein domains, they are a 3-fold less diverse in structural 

conformation then their observed sequences (CATH-Gene3D ID: 1.20.120.350).187 

Due to the structural overlap, we validated if molecular effects of missense variants 
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at these hotspots are likely to have similar impact on domain function across the 

25 genes. Using the 25 homology models we found that hotspot p.96 (Figure 3A) 

and p.102 (Figure 3B) are part of the voltage-sensing helix that is important for 

the channel in/activation.188 Hotspot p.231 (Figure 3C) is part of the channel gate 

at the end of the transmembrane helix (Supp. Data S7). In addition, we found 

that missense mutations follow a specific pattern for each of these hotspots. Of 

the 13/16 missense DNMs located at hotspot p.96 and 20/20 at p.102 change the 

positively charged wild-type residue to lose the positive charge. Losing positive 

charges at these locations has previously been described to trigger a function 

altering disease-mechanism (Figure 3A&B).189,190 At hotspot p.231 20/21 of the 

missense DNMs changes the wild-type residue from a small into a larger residue. 

This change in residue size likely impacts the pore closure. This is estimation is 

shared by Kortüm et al. as they suggest this likely causes a steric hindrance and 

result into a function-altering mechanism of disease (Figure 3C).191 Furthermore, 

previous studies have concluded that missense DNMs in ion-channel genes are 

likely to result in DDs: The location and type of missense mutations in these 

channel genes may result in different phenotypes depending on whether they 

alter the function or disrupt the entire structure of the proteins.192,193 Additionally, 

we previously found this protein domain family to be significantly enriched with 

missense DNMs in genes that are associated to DDs.179 Considering these analyses, 

we argue that missense mutations at the identified hotspots are likely deleterious 

to the domain function. 
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A.  B. 

C. 

Figure 3. Structural changes due to missense DNMs in DD-associated genes for each hotspot. 

A. Homology model of the KCNQ3 complex (Source PDB ID: 5VMS) with missense DNM p.R227Q 
marked as a green to red change. The KCNQ3 complex is a tetramer constructed from four copies 
of the KCNQ3 monomer. All monomers are marked in different color shades. This DNM is located 
at identified hotspot p.96. The wild-type Arginine residue is part of the voltage-sensing helix and 
changed into a Glutamine. This change causes it to lose the positive charged that was previously 
found to cause a function-altering mechanism of disease.189

B. Homology model of CACNA1A (Source PDB ID: 6JPB) with missense DNM p.R1663Q marked as 
a green to red change. This DNM is located at identified hotspot p.102. The wild-type Arginine 
residue is part of the voltage-sensing helix and changed into a Glutamine. This change causes it 
to lose the positive charged that was previously found to cause a function-altering mechanism of 
disease.190

C. Homology model of the KCNH1 complex (Source PDB ID: 5K7L) with missense DNM p.G496R 
marked as a green to red change. The KCNH1 complex is a tetramer constructed from four copies 
of the KCNH1 monomer. All monomers are marked in different color shades. This DNM is located 
at identified hotspot p.231. The wild-type Glycine residue is near the pore-closing region and 
changed into a much larger Arginine. This may impact pore closure and is previously reported to 
result into a function altering mechanism of disease.191
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We focused on 6 mutations in the 6 genes that had no developmental disorder 

association: TRPM5, TPCN2, TPCN1, KCNH5, KCNG1, and CACNA1B. We conducted 

a literature review for each of the 6 genes. The CACNA1B gene was recently 

established as a DD-associated gene on the basis of nonsense DNM enrichment.194 

For KCNH5 a DNM, identical to the one in our analysis, was described as a variant of 

unknown significance (VUS) in a patient with epileptic encephalopathy.195 Protein 

structural analysis revealed that this variant weakens ionic interactions between 

other neighbouring negatively charged residues that destabilizes channel resting 

and activation states of the ion channel.196 The variant was not from the patient 

included in the Kaplanis et al. study, meaning there are two patients with similar 

phenotypes and the same potentially causative variant. The patient from the 

Kaplanis et al. study is part of a cohort in an upcoming study which proposes KCNH5 

as a novel candidate gene for DD-association based on more likely pathogenic 

variants identified in this gene (personal communication with Heather Mefford 

and Erin Torti 25th of September & 6th of October 2020). Both TPCN1 and TPCN2 

have no DD-association at the moment, however, they are both part of the mTOR 

complex. Genes that are part of this complex have previously been associated 

to DDs.197 Specifically, variations in genes related to mTOR are associated to 

intracranial volume and intellectual disability.198 In-house phenotypic data for 

the patient with the missense DNM in TPCN1 (p.265R>Q) at hotspot p.96 fits this 

hypothesis as this patient has macrocephaly and severe ASD. To the best of our 

knowledge, no current literature points to a DD-association for KCNG1 or TRPM5. 

Finally, we classified each variant according to the ACMG guidelines (Table 1, 
Supp. Table 4). The DNMs in KCNH5 and CACNA1B are class 5 (Pathogenic) and the 

other DNMs as class 4 (Likely Pathogenic). A detailed description of the missense 

DNMs in these six candidate genes are described in Table 1.
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Variant Gene Literature 
evidence for likely 
DD-association

gnomAD AF / 
SIFT / Polyphen-2 
/ MPC / CADD / 
MetaDome score

ACGM 
classification 

ENST00000452833.1 
c.2558G>C; 
p.850R>Q; 
PF00520:p.102

TRPM5 
*604600

Unknown 1,20E-02 // 
Deleterious (0) // 
Probably dama-
ging (1) // - // 28.7 
// intolerant (0.49)

Likely Pathoge-
nic (Class 4)

ENST00000294309.3
c.1734C>A; 
p.545R>S; 
PF00520:p.96

TPCN2 
*612163

Part of the mTOR 
complex 197

- // Deleterious 
(0.02) // Probably 
damaging (0.965) 
// 0.80 // 23.5 // 
slightly intolerant 
(0.67)

Likely Pathoge-
nic (Class 4)

ENST00000550785.1 
c.963G>A; 
p.265R>Q; 
PF00520:p.96

TPCN1 
*609666

Part of the mTOR 
complex 197

7.97e-06 // Tolera-
ted (0.1) // Possibly 
damaging (0.903) 
// 2.35 // 26.1 // 
tolerant (1.03)

Likely Pathoge-
nic (Class 4)

ENST00000322893.7 
c.1249G>A; 
p.327R>H; 
PF00520:p.102

KCNH5 
*605716

Identical VUS 
(p.327R>H) in unre-
lated patient with 
epileptic encephal-
opathy 195

- // Deleterious (0) 
// Probably dama-
ging (0.999) // 1.93 
// 32 // intolerant 
(0.19)

Pathogenic 
(Class 5)

ENST00000371571.4 
c.1332G>A; 
p.349R>H; 
PF00520:p.102

KCNG1 
*603788

Unknown - // Deleterious 
(0) // Probably 
damaging (1) // 
2.74 // 32 // highly 
intolerant (0.13)

Likely Pathoge-
nic (Class 4)

ENST00000371372.1 
c.1887G>A; 
p.581R>H; 
PF00520:p.102

CACNA1B 
*601012

Nonsense DNMs in 
CACNA1B lead to a 
neurodevelopmental 
disorder with seizu-
res and nonepileptic 
hyperkinetic move-
ments #618497 194

4,58E-03 // 
Deleterious (0) // 
Probably dama-
ging (0.999) // 1.32 
// 26.1 // highly 
intolerant (0.13)

Pathogenic 
(Class 5)

Table 1. Overview of the variants found at the hotspots that are located in genes that are not in 
the consensus and discordant gene lists of Kaplanis et al.179 We used the Ensembl Variant Effect 
Predictor (VEP)199 to annotate gnomAD allele frequency (AF)51, SIFT200, Polyphen-228, MPC11, and the 
CADD_Phred29. MetaDome53 tolerance indication based on regional dN/dS was obtained manually. 
ACGM201 classification was obtained through variant curation by a laboratory specialist.
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Discussion

Robustly predicting the pathogenicity of mutations is fundamental to improve 

patient diagnostics and to the advancement of our understanding of the biology 

underlying disease. Previously, the re-occurrence of missense mutations at 

identical homologous domain positions has been used to successfully implicate 

function and separate driver from passenger mutations in cancer.61,182,186,202–204 

The mCluster183 scoring and the DS-Score186 approaches were both developed 

specifically to this purpose, and, we based the MDHS p-value (Equation 1) on 

these previous methods. The MDHS p-value identified three hotspots enriched 

with missense DNMs in patients with DDs, and, all hotspots are located in the 

Ion Transport protein domain family (PF00520). In contrast to computing DNM 

enrichment per gene, we computed enrichment of DNMs at equivalent protein 

domain positions. This way we identified functionally important mutational 

hotspots. We have shown that the missense mutations at these hotspots disrupt 

domain function in the 3D protein structure. Six of the 25 genes that had missense 

DNMs at these hotspots had no previous diagnostic DD-association. Although 

this does not without a doubt confirm that these DNMs are the cause of disease 

for these six novel candidates, it does show that these genes are worth extra 

consideration for further functional DD-association studies. To that extent, of 

the six novel candidate genes we found, KCNH5 and CACNA1B have been recently 

associated to DDs. TPCN1 and TPCN2 are likely candidates as they are part of the 

mTOR complex. For KCNG1 we could not find anything in particular pointing to DD-

association. We evaluated any other DNMs identified in these patients in order to 

exclude an existing diagnosis (Supp. Data S8). The patient with a missense DNMs 

at the hotspot in TRPM5 also has DNMs in established DD-associated genes SLC9A1 

and ADNP, making TRPM5 a less likely candidate gene for DD-association. None of 

the other 5 patients have DNMs in a gene with a currently known DD-association.

In line with previous finding that missense clusters indicate functional 

importance,104,119,205,206 here we identified DNM hotspots in protein domains of 

likely functional importance. Using our MDHS p-value we found 32 missense DNM 

hotspots based on 15,322 DNMs. After filtering these 32 hotspots with the criteria 

that the DNMs driving enrichment should span at least two different gene-codons, 

23 hotspots remained. We cannot exclude that some of these 23 hotspots may have 

been identified due to gene-based DNM hotspots. However, the three hotspots 
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that we analysed extensively were also part of these 23 hotspots, indicating that 

maybe more of the 23 hotspots are due to domain-based enrichment. The 245 

missense DNMs that led to the identification of the 23 hotspots resulted from 67 

genes. Nineteen of these 67 genes were not associated to DDs in the Kaplanis et al. 

study. In our extensive analysis we discussed six of these nineteen genes. Of these 

six we proposed five as likely DD-associations. 

Methods that make use of protein domain architecture to aggregate variants will 

increase in precision with the influx of larger datasets.93 Therefore, in the future 

more discoveries of protein domain missense DNM hotspots in DD patients is 

possible if cohort size increases, and, this will further drive candidate association 

of genes to DDs and understanding of molecular mechanisms of DNMs on protein 

structure and function.
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Supporting Information
All supplementary information can be found online

https://wiel.science/publications/domain_dnm_hotspots





“Pass on what you have learned. Strength. Mastery. But weakness, folly, failure 

also. Yes, failure most of all. The greatest teacher, failure is.”

–

Yoda in Star Wars Episode VIII – The Last Jedi (2017)  
conversation between Yoda and Luke
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Data integration is important for DNA variant 
interpretation
Human DNA is complex and contains much more information than just the 

nucleotide sequence. For example, the DNA has a particular 3-dimensional 

structure which is folded around histones at specific locations and encodes for 

proteins, furthermore parts of these proteins can contain protein domain regions 

with a particular structure and function. Representing DNA as just a sequence 

of letters allows for both human and computer readability at the cost of losing 

information, this can be recovered by adding it as metadata and annotations. 

Integration of many layers of information is challenging, but crucial for the 

interpretation of genetic variation. 

I have integrated genome data with protein domain sequences in so-called meta-

domains, which have been mapped on 3D structures. The concept of meta-

domains, that allows for transfer of information between equivalent residues in 

different proteins (Chapter 2),93 has been implemented in MetaDome (Chapter 
3).53 MetaDome was instrumental in a series of developmental disorder studies 

that contributed to the identification of 36 novel candidate gene associations 

(Chapter 4, 5, and 6).104,179 Mapping the mutations on 3-dimensional protein 

structures revealed the likely disease-mechanism for eight of these candidate 

genes (Chapter 4 and 6). A single variant in a meta-domain mutation hotspot 

helped identify six of these 36 candidate disease-genes (Chapter 6).

I will discuss how meta-domains have helped increase our understanding of 

genetic variation, and I will discuss the limitations of meta-domains and their 

potential future use.

The completeness of genetic variation

Reaching saturation of tolerated genetic variation
In 1943, mathematician Abraham Wald calculated which parts of B-17 bomber 

planes needed extra armour in order to increase their survivability. He aggregated 

bullet hole location data from B-17s that returned from missions. He visualised 

this on a schematic representation of a B-17 (Figure 1A). One might intuitively 

suggest adding armour to the areas with the most damage, but Wald suggested 
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adding extra armour to the areas that are rarely damaged. This indeed increased 

survivability because airplanes with damage in these areas never returned.207,208 

This example of ‘survivorship bias’208 resembles the genetic tolerance that was 

discussed in the Introduction. In Chapter 2 we showed that genetic tolerance of 

regions is preserved across domain homologues. We illustrated that this principle, 

similar to Wald’s case, can be used to predict regions that are essential, and thus 

predict likely deleteriousness of novel genetic variants. It has been shown that 

novel missense mutations observed in intolerant regions tend to be disease-

causing too.11,209–211

A.

Figure 1. A. Example of ‘survivorship bias’ based on a schematic representation of a B-17 airplane. 
The red dots indicate bullet holes found on B-17s that returned after missions. The green dotted 
ellipses indicate areas where almost no bullet hole was found on surviving B-17s. (Airplane image 
courtesy of McGeddon, adapted from Wikimedia and licensed under Creative Commons CC BY-SA 
4.0)
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B. . 

Figure 1. B. Example of the protein kinase domain (PF00069) in the CDK13 protein structure. 
The green blobs are positions that are consistently enriched in meta-domain based on ExAC50 
missense variants from 353 homologues. De novo mutations known to cause a developmental 
disorder are displayed as dark red blobs. These red blobs are located in the region depleted 
of aggregated population-based variation. (Protein image was created using YASARA14 modeling 
software based on the PDB structure 5EFQ212).

It is estimated that saturation of tolerated variation will require population 

studies in the hundreds of millions of individuals.51 The publicly available genetic 

data resulting from population-based sequencing studies increased from 1,000 

to 141,456 individuals in the past decade.47,50,51,58 The size of population-based 

studies will likely continue to grow in the coming years, but it may take several 

decades before saturation is reached. Additionally, not all variation will be found 

through population sequencing studies alone. For example, only half of all protein 

truncating variants are expected to be found in such studies. The other half is 
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expected to be heterozygous lethal.51 Sequencing studies of rare variation with 

low propagation chance may help compensate here, for example, large scale 

genetic studies on stillbirth or infertility.213–215

Meta-domains can help to reach saturation of all tolerated genetic variation 

much sooner. Meta-domains can aggregate variation found in regions that cover 

41% of the human genome. For example, we can aggregate missense variants 

encountered in gnomAD over all 353 instances of the Protein Kinase domain 

(PF00069) in the human genome. Then, a pattern of tolerated missense variation 

emerges in the 3D protein structure (Figure 1B). Located inside the intolerant 

region in Figure 1B are confirmed pathogenic missense mutations which indicate 

the intolerant region’s deleteriousness. This example is only an indication of the 

usefulness of data integration to reduce the need for sequencing studies.

The importance of missense variant location and genetic data of 
unknown clinical significance

In contrast to Wald’s situation, in genetics we sometimes do have “bullet hole 

information from the planes that did not survive”: pathogenic mutations in 

patients with a genetic disorder. Distinguishing benign variation from pathogenic 

mutations, even in intolerant regions, remains challenging. Combining novel 

variants from patients with a suspected genetic disorder can help identify commonly 

affected regions in a gene, protein, or, over protein domain homologue. Data 

such as the growing collection of DNMs from patient cohorts with undiagnosed 

DDs59,109,114,120,123,127,128,179,216–223 have proven especially helpful: sequence-based 

clusters of missense variants of unknown clinical significance can predict 

dominant vs recessive inheritance patterns,116 distinguish haploinsufficiency and 

non-haploinsufficiency disease mechanisms (Chapter 4),104 and identify positions 

where variation may trigger a function-altering mechanism of disease (Chapter 
6). All in all, clustering of variants of uncertain significance is likely to indicate 

functional importance.104,119,205,206,224 Discovery of the location of disease-causing 

missense variants uncovers a great deal of understanding behind a possible 

disease-mechanism, and perhaps in the future, treatments.

These methods are very powerful but require large datasets. It will therefore be 

crucial to keep forming large collaborations to combine large datasets of missense 

variants with pathogenic, benign, or unknown clinical significance.
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The limitations of meta-domains

The need for high abundance and high quality data for meta-domains

Biological data is inherently noisy and varies in data quality due to a myriad of 

reasons.225 A well understood computer science principal is “Garbage in, Garbage 

out” meaning that the quality of results of any method is dependent on the quality 

of the input data. Meta-domains are no exception to this. In fact, Meta-domains 

are highly dependent on the quality and amount of genetic information that is 

integrated. For example, whereas individuals with a childhood-onset disease were 

excluded from gnomAD, pathogenic variation part of recessive, polygenic, and/

or late-onset genetic disorders is still present in gnomAD.51 Computing tolerance 

based on gnomAD could therefore result in assigning regions as tolerant, whereas 

they are not. For this reason we removed rare variants and variants present in 

HGMD91 or ClinVar54 from our analyses in Chapter 2. On the other hand, a large 

percentage of variants are incorrectly marked as pathogenic in clinically relevant 

databases.85–87 One of the reasons for this is that most small scale studies cannot 

be successfully replicated.226 Luckily, these databases are gradually improved in 

both quantity and quality and thereby meta-domains will increase in efficacy too.

Reasoning on variant pathogenicity with meta-domains

Protein domains cover 41% of the human genome sequence.93 Meta-domains can 

utilise the within-human domain homologues to aggregate variant information. 

There are currently 3,334 Pfam-based meta-domains. These meta-domains have 

two, up to hundreds, of domain occurrences throughout the human genome. 

For example, the Protein kinase domain (PF00069) meta-domain in Figure 1B 

has 353 occurrences throughout the human genome.53 The usefulness of variant 

aggregation in meta-domains scales with the number of homologue occurrences. 

Meaning that, for a low number of occurrences, the chance of encountering 

multiple variants from different protein domains diminishes. Additionally, the 

chance to observe biological signals from aggregated variation in meta-domains 

becomes smaller. Therefore, the efficacy of meta-domains is dependent on the 

number of homologue occurrences. Still, I would argue that even a single hit 

of a pathogenic variant at an equivalent protein position may be informative 

for evaluating a patient’s candidate missense variant. First of all, homology is 

powerful: Mutations at equivalent locations in homologous proteins result in 
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similar effects on protein stability.40 Because protein domains are evolutionary 

conserved regions, pathogenic missense mutations in human protein domains 

have similar pathogenic effects in yeast.181 Therefore, finding a novel missense 

variant in a meta-domain, which at an equivalent protein domain position leads 

to disease, provides more support for pathogenicity than when encountering 

identical novel variants in two patients.

Meta-domains are constructed on sequence-based protein domain 
identification methods

Protein domains are at the core of the meta-domain concept and therefore the 

quality and completeness of protein domains determine to a large degree the 

meta-domain efficacy. We have built meta-domains upon Pfam41 domain families, 

which are based on multiple sequence alignments of conserved sequences that 

overlap between evolutionary related species. Pfam is one of many protein domain 

identification methods. Typically, protein domain identification methods can be 

categorised into sequence-based and protein structure-based approaches.227 Meta-

domains can aggregate variant information over homologous protein domains, 

and, using a sequence-based approach has major benefits for aggregation. Firstly, 

sequence alignments force residues that are evolutionary conserved to be ‘aligned’ 

at identical positions. This allows for ease of aggregation from a computational 

perspective while retaining high certainty that these positions are identical from 

an evolutionary perspective. Secondly, sequence information is much more 

prevalent than protein structure information (Figure 2). Thus, Pfam-based 

meta-domains cover a large part of the human genome but at the cost of losing 

molecular structure information, however, highly related sequence homologues 

in general share the same protein structure.227 In addition, structural information 

can be annotated to sequence-based protein domains. Recently, Pfam expanded 

annotation of PDB structures and structural models for 88% of the Pfam domain 

families.228 This suggests that the loss of molecular structure information may 

soon be less of an issue for sequence-based meta-domains.
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Figure 2.   
Growth of protein structural coverage of the human genome based on sequence. This coverage 
does not take into account the 44% of protein sequences without a rigid structure, also called 
the dark proteome229 (Image adapted from the SWISS-MODEL Repository and is licensed under 
Creative Commons CC BY-SA 4.0 – swissmodel.expasy.org).230

The future of meta-domains

Sequence-based protein structure prediction

So, why focus on structure-based methods for meta-domains at all? Structure is 

more conserved than sequence,37,44 which is why structure-based domain detection 

is more sensitive than sequence-based detection. It can identify homologues 

with less than 15% sequence identity that are undetected by sequence-based 
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methods.227 Meta-domains that are built on structure-based domain identification 

methods will therefore add to the overall coverage of the genome. A meta-

domain-like approach using CATH187,231 structure-based protein domain families 

was recently proposed by Ashford et al. (2019). This approach was suggested to 

be complementary to meta-domains.182 However, the major limiting factor with a 

pure structure-based approach remains the structural coverage of sequences. As 

of 2008 the amount of unique structural folds have stagnated in the Protein Data 

Bank.227 The growth of structural protein coverage of sequences so far has mostly 

happened due to the betterment of structure determination and 3D homology 

modelling methods (Figure 2).230

A full structural coverage of the human genome sequence will likely never be 

reached. In fact, 44% of the total human genome protein-coding sequence 

consists of (partial) natively unfolded proteins called the dark proteome229 (e.g. 

proteins that do not conform to a rigid structure). Nevertheless, there is still much 

to improve (Figure 2). Accurate prediction of protein structure based on sequence 

alone has been an unsolved challenge since the 1980s. Interestingly, however, 

it may have been solved only very recently with AlphaFold2’s participation in 

the annual Critical Assessment of Structure Prediction (CASP) challenge.232 The 

preliminary results of this novel computational approach show a tremendous leap 

forward compared to previous years. Two-thirds of structure predictions resulting 

from AlphaFold2 are indistinguishable from experimentally determined protein 

structures. A full description of AlphaFold2 has yet to be released but it builds 

further on the previous AlphaFold approach.233 The impact of AlphaFold2 will likely 

lead to a large part of protein-coding genes to have a predicted protein structure. 

This will have a major effect on protein domain identification methods from at 

least two perspectives. Firstly, sequence-based domain methods are more likely 

to have a structure assigned. This increases the potential to analyse the molecular 

effects of mutations in these protein domains. Secondly, with more (predicted) 

structure, structure-based domain methods might uncover protein domains for 

which previously the structural coverage was too limited. These sequence-based 

and structure-based perspectives will both be beneficial for meta-domains; the 

catalogue of homologous protein domains will grow and so will the potential to 

analyse molecular effects of mutations in protein domains.
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Population-based variant allele frequency can complement 
evolutionary conservation

Evolutionary conservation is a strong predictor of pathogenicity and heavily used 

in pathogenicity predictors such as Polyphen-228 and CADD29. These predictors 

perform well, but leave room for improvement especially within a clinical 

context.55–57 In Chapter 2 we show that 54% of the aggregated protein domain 

positions with one or more disease-causing missense variants were found to 

be evolutionary variable. If we assume that most disease-causing variants are 

correctly marked as pathogenic in the clinically relevant databases, then this 

could be an indication that evolutionary conservation could be complemented 

by population-based data. One way meta-domains can complement evolutionary 

conservation is by the inclusion of the population frequency of variants. For 

example, in most of our analyses including the display in the MetaDome web 

server, we only use the aggregated missense counts. Instead, the frequency of 

missense variants encountered in general population could be used. This way, 

MetaDome could represent amino acid frequency across homologous domain 

positions as a complement to evolutionary conservation scores.

The validation of the full mutational spectra in meta-domains

To quote George Box (1978) - “All models are wrong but some are useful”, which also 

applies to meta-domains. Therefore, validation of models remains essential. In 

a study by Peterson et al. (2013) yeast was used as a model organism to validate 

deleterious effects of recurring pathogenic missense mutations at homologous 

human protein domain positions.181 This study suggests that pathogenic missense 

mutations in protein domains have similar deleterious effects across species. 

Furthermore, this opens the door to use the vast amount of clinical data from 

the human genome to predict deleteriousness in other organisms. To achieve 

validation on a much larger scale in the future, we may be able to combine data 

from deep mutational scanning with meta-domains. Deep mutational scanning is 

a high-throughput method that allows for editing and analysing the effect of every 

single nucleotide variant change over a stretch of nucleotides in a massively parallel 

manner.234–237 Already, data resulting from deep mutational scanning projects 

are empowering protein structure determination, co-variation and variant effect 

prediction.238–240 However; deep mutational scanning has two major limitations. 

Firstly, it is only applicable on small regions of nucleotides. Secondly, to determine 
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mutational effects there needs to be a clear functional readout. To date, the 

protein coding region of BRCA1 is the largest stretch of nucleotides that has been 

tested with deep mutational scanning.241 In this study by Findlay et al. (2018), each 

possible variant in BRCA1 was tested for its functional effect on homology-directed 

DNA repair, a mechanism that is necessary for tumour suppression. Meta-domains 

are a perfect candidate for deep mutational scanning projects. First of all, protein 

domains cover small parts of a protein. Secondly, a large proportion of protein 

domains have a specific function that may be very suitable for a functional read-

out. Thirdly, performing deep mutational scanning on a single protein domain has 

implications for all homologous occurrences. If we reason from the findings of the 

yeast study of Peterson et. al. (2013) these implications may be cross-species.181 

I therefore believe that deep mutational scanning is the next step to filter out 

domain-specific from protein-specific mutational effects. 

The future of meta-domains without reinventing “de Wiel”

In this thesis we have discussed how to evaluate variant pathogenicity using the 

meta-domain concept. We have shown how meta-domains can lead to a deeper 

understanding of disease-mechanisms by capturing signals from ‘noisy’ clinical data 

of unknown significance. Previous studies in cancer genetics have utilised reasoning 

and concepts that bear some resemblance to meta-domains.61,180–183,203,204,242–244 These 

studies, to me, are an indication that with the growth of genomic information, 

methods that were originally intended for different purposes may become more 

and more relevant. 

Reuse of previously proved concepts also underlies the design of MetaDome. The 

goal for constructing the MetaDome web server was to make the abstract concept 

of meta-domains available in a user-friendly manner. My computer science 

background allowed me to set up MetaDome in accordance to up-to-date standard 

practice. Firstly, the code is completely documented and publicly available as open 

source on a code repository. Secondly, MetaDome is ‘containerized’, meaning 

that anyone willing can run MetaDome on their own personal computer set-

up identically to the actual server. The containerization will ensure the identical 

environment, regardless of the host machine’s operating system or software 

versions. Containerization is especially helpful in scientific projects. For example, 

it ensures that referees are able to run the identical software during peer review. 
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Furthermore, containerization ensures indefinitely operational software. This 

last part often proves to be a problem in scientific labs where it is common that 

developers of the software migrate to different labs together with their expertise. 

This expertise is especially missed when hardware or software dependencies are 

upgraded that may result in non-functional software. This is not a problem for 

containerized software. Lastly, incorporating usage tracking in a web server helps 

in understanding how much it is used more than citation count would. I therefore 

believe that usage statistics should be part of grant applications that are specific 

to the continuation of scientific software projects. MetaDome has now (March 

2021) been used by ~5,100 individuals from 80 countries since the initial release 

(November 2018). MetaDome is still steadily growing in monthly users with 460 

users in the last month. The growth of users for MetaDome is a testament to 

its success, and, for the need of providing easily-accessible and user-friendly 

ways to handle the increasingly complex concepts that arise from the growth of 

genomic data. I believe these are lessons long learned in computer science at that 

computational biologists do not need reinvent the wheel.

In this discussion I have explored the potential applications of meta-domains 

that are outside of the scope of this thesis. I have examined the limitations to the 

concept of meta-domains, and, how they may be resolved. Lastly, I have provided 

a glimpse into the potential future of meta-domains. These future perspectives 

may lead to more accurate prediction and better understanding of mutational 

effects in protein domains and a better understanding of genetic variation.
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Statement on FAIR research data management

Ethical compliance, consent, and FAIR patient data

Work in this thesis is based on the results from human studies. These studies 

were conducted in accordance with the principles of the Declaration of Helsinki. 

All families involved in these human studies gave informed consent. The human 

studies in this thesis were approved and conducted in accordance to the guidelines 

set forth by:

• The medical and ethical review board Committee on Research Involving 

Human Subjects Region Arnhem Nijmegen (2011/188). 

• The UK Research Ethics Committee (10/H0305/83 granted by the Cambridge 

South Research Ethics Committee, and GEN/284/12 granted by the Republic 

of Ireland Research Ethics Committee).

• The Western Institutional Review Board, Puyallup, WA (WIRB 20162523).

All analysed data, resulting from these human studies, has been included in 

the published articles. Any additional files are available from the associated 

corresponding authors on request. Raw sample material and identifiable clinical 

information were not part of the publications. Sequence and variant-level data and 

phenotypic data for the DDD study data are available from the European Genome-

phenome Archive (EGA) with study ID EGAS00001000775. The Radboudumc 

sequence and variant-level data are stored on the Radboudumc Human Genetics 

department server and cannot be made available through the EGA owing to the 

nature of consent for clinical testing. In accordance to ‘Wet op de geneeskundige 

behandelingsovereenkomst’ (WGBO), Radboudumc patient data will be kept 

for fifteen years after publication. To access this data, please contact Christian 

Gilissen with a request. Data sharing will be dependent on patient consent, 

diagnostic status of the patient, the type of request and the potential benefit to 

the patient. GeneDx data cannot be made available through the EGA owing to 

the nature of consent for clinical testing. GeneDx-referred patients are consented 

for aggregate, deidentified research and subject to US HIPAA privacy protection. 

As such, GeneDX is not able to share patient-level BAM or VCF data, which are 

potentially identifiable without a HIPAA Business Associate Agreement. Access to 

the deidentified aggregate data used in this analysis is available upon request to 
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GeneDx. Clinically interpreted variants and associated phenotypes from the DDD 

study are available through DECIPHER. Clinically interpreted variants from RUMC 

are available from the Dutch national initiative for sharing variant classifications 

(VKGL) as well as LOVD, where they are listed with ‘VKGL-NL_Nijmegen’ as the 

owner. Clinically interpreted variants from GeneDx are deposited in ClinVar under 

accession number 26957.

Usage of public resources

The analyses in Chapter 2, 3, 4, and, 6 were performed on scientifically published 

public datasets and resources. Citations, version numbers, and, identifiers were 

used to link back to these resources. See the methods and material section of 

each article for step-by-step ways to reproduce the results. See the Web links & 
resources and Availability and identifiability of supporting data for further 

details.

Availability and identifiability of supporting data

All supporting data of work in this thesis have been (or will be) made accessible 

upon publication of the corresponding articles. Each element in the supporting 

data has been assigned an identifier:

• Data resulting from patient material samples are provided with a ‘sample 

identifier’. This identifier, publicly, cannot directly be linked back to 

identifiable information of a patient. Internally, at Radboudumc, DDD, and 

GeneDX, these links may be made by the appropriate clinicians. If such 

information is required, it may be obtained via the associated corresponding 

authors of the studies.

• All genes references in were marked by GENCODE and/or RefSeq IDs.

• All disease related phenotypes or genotypes had associated OMIM IDs.

• Any references to variants had a corresponding ClinVar, HGMD, ExAC, or 

gnomAD IDs.

• Every protein structure has an associated PDB ID. The template structure’s 

PDB ID was noted if it was a homology modelled structure.

• Protein domains have a Pfam and/or Interpro ID.

• Meta-domains make use of Pfam IDs and Pfam consensus positions.
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Source code availability

All Source code used for Chapter 2 was made available with release of MetaDome 

in Chapter 3. The code for SpatialClustering in Chapter 4, and DeNovoWest and 

Phenopy from Chapter 5 are available on Github. Source code for the analyses in 

unpublished Chapter 6 will be made available via GitHub upon publication. See 

Code repositories for links to the repositories and a listing of Tools, Frameworks 
and Programming languages used.

Code repositories
DeNovoWest:   https://github.com/queenjobo/DeNovoWEST
MetaDome:   https://github.com/cmbi/metadome
Phenopy    https://github.com/GeneDx/phenopy
SpatialClustering:  https://github.com/laurensvdwiel/SpatialClustering

Tools, Frameworks and Programming languages
Biopython:   https://biopython.org/
BULMA:    https://bulma.io/
Celery:    http://www.celeryproject.org/
Docker:    https://www.docker.com/
D3.js:    https://d3js.org/
Flask:    https://palletsprojects.com/p/flask/
Jupyter:    https://jupyter.org/
PostgreSQL:   https://www.postgresql.org/
Python:    https://www.python.org/
RabbitMQ:   \https://www.rabbitmq.com/
Redis:    https://redis.io/

Web links & resources
CADD:    https://cadd.gs.washington.edu/
ClinVar:    https://www.ncbi.nlm.nih.gov/clinvar/
CMBI PDB facilities:  http://swift.cmbi.ru.nl/gv/facilities/
DECIPHER  https://decipher.sanger.ac.uk
Denovo-db:   https://denovo-db.gs.washington.edu/
DDG2P:    https://www.ebi.ac.uk/gene2phenotype/downloads
DDD:    https://decipher.sanger.ac.uk/ddd
EGA   https://www.ebi.ac.uk/ega/
ExAC:    https://exac.broadinstitute.org/
GENCODE:   https://www.gencodegenes.org/
gnomAD:   https://gnomad.broadinstitute.org/
HGMD:    http://www.hgmd.cf.ac.uk/
HMMER:    http://hmmer.org/
HOPE:    http://www.cmbi.ru.nl/hope/
InterPro:    https://www.ebi.ac.uk/interpro/
Lift Over tool:   https://genome.ucsc.edu/cgi-bin/hgLiftOver
LOVD   https://databases.lovd.nl/shared/variants
MetaDome:   https://stuart.radboudumc.nl/metadome/
MRS:    https://mrs.cmbi.umcn.nl/
NHLBI ESP:   https://evs.gs.washington.edu/
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OMIM:    https://www.omim.org/
Pfam:    https://pfam.xfam.org/
RCSB PDB:   http://www.rcsb.org
RefSeq   https://www.ncbi.nlm.nih.gov/refseq/
RVIS:    http://genic-intolerance.org/
subRVIS:    http://www.subrvis.org/
UniProtKB/Swiss-Prot:  https://www.uniprot.org/
VKGL   https://www.vkgl.nl/nl/diagnostiek/vkgl-datashare-database
wwPDB:    www.wwpdb.org
YASARA:    http://www.yasara.org/
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Summary
About 2-5% of all children are born with severe developmental disorders (DDs) 

and about half of these cases have a genetic cause. Despite that hundreds of DD-

associated genes have been identified, the genetic cause for two-third of these 

patients remains undiagnosed. A genetic diagnosis helps families in many ways. 

They can join support networks, get information about possible treatments, and 

they learn about the risks for having further children. DDs are often the result 

of de novo mutations (DNMs) that are thus not inherited from the parents. Every 

individual has about 1-2 de novo mutations in the protein-coding regions of the 

genome. This low number of DNMs makes it hard to gather enough data for 

proper statistical treatment. Large-scale projects have been performed over 

the past decade to gather data on a world-wide scale. This has allowed for the 

association of a series of DDs to genes; often by finding a larger number of DNMs 

in one gene than expected in the patient cohort.

This thesis integrates human genome data with 3D protein structures with a focus 

on structure domains. This integration allows for the detection of disease-causing 

effects of mutations and has contributed to the identification of 36 candidate 

disease-gene associations for DDs. These newly associated genes directly enabled 

diagnosis for 500 families included in the studies and many more to follow world-

wide. 

The meta-domain framework and the MetaDome web server

1-2% of the human DNA codes for proteins, of these proteins 42% are formed 

by recurring protein domains. Domains are small parts of a protein with specific 

structure and function. Often very different proteins share structurally highly 

similar domains that are homologs. 

In Chapter 2 we introduce meta-domains as the alignment of the proteome on 

human Pfam domains. These meta-domains are annotated with data extracted 

from pathogenic and population-based variation databases, genomic locations, 

evolutionary conservation, etc. Meta-domains allow for transfer of information 

between equivalent residues in different proteins. In Chapter 3 we describe the 

MetaDome web server that uses this concept to support the analysis of genetic 

variants of unknown clinical significance. MetaDome makes the abstract concept of 

meta-domains widely available, including to scientists with limited bioinformatics 
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expertise. 

Identification of candidate developmental disorder genes and 
disease mechanisms

In Chapter 4 we used spatial clustering on publicly available DNM DD-patient 

data to identify missense DNM clusters in fifteen genes, three of which were 

not previously associated with DD. Analysis of these clusters in the protein 3D 

structure suggested a Non-Haploinsufficiency disease-mechanism.

In Chapter 5 we describe how a unique international collaboration between the 

Radboudumc, GeneDX, and the Wellcome Sanger Institute shared healthcare data 

of 31,058 parent-offspring trios of patients with DDs. In the resulting article in 

Nature we describe a series of innovations that were only possible thanks to the 

large size of this dataset. 285 DD-associations to genes could be made, of which 

28 were previously unknown. We estimate that for at least ~1,000 genes a DD-

association is still to be discovered, indicating how much work remains. This article 

will serve as a reference point to understand the genomic architecture of DNMs 

and DDs for years to come.

In Chapter 5 we also observed that more than two-third of all missense DNMs 

in DD-associated genes are found in domains, of which ion transport domains, 

ligand-gated ion channels, protein kinase domains, and kinesin motor domains 

are most enriched. In Chapter 4 we concluded that disease associated DNMs tend 

to cluster in the 3D protein structure, and in Chapter 6 we invert this reasoning 

and use the clustering of DNMs in 3D protein structures as an indication of their 

disease association. After removing the genetic redundancy from the 45,221 

DNMs from Chapter 5, MetaDome found three missense DNM hotspots in the 

ion transport domain. These were found in 25 genes, 19 of which were already 

DD-associated. Human analyses of the 3D protein structures suggested a similar 

functional role for the native residue at each hotspot, suggesting that the DNMs 

in the six novel genes are deleterious too. Chapter 6 thus shows that a novel way 

of data integration leads to an enhanced interpretation of the pathogenicity of 

genetic variants.
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Samenvatting
Ongeveer 2-5% van alle kinderen wordt geboren met een ernstige 

ontwikkelingsstoornis (OS) en ongeveer de helft van deze stoornissen heeft een 

genetische oorzaak. Ondanks dat er honderden OS-geassocieerde genen bekend 

zijn, blijft de genetische oorzaak onbekend voor tweederde van de patiënten. Een 

genetische diagnose helpt gezinnen op veel manieren. Ze kunnen lid worden van 

ondersteunende netwerken, informatie krijgen over mogelijke behandelingen 

en ze leren over de risico’s van het krijgen van meer kinderen. OS zijn vaak het 

resultaat van de novo mutaties (DNMs) die dus niet van de ouders worden geërfd. 

Elk individu heeft ongeveer 1-2 de novo mutaties in de eiwit coderende regio’s 

van het genoom. Dit lage aantal DNMs maakt het moeilijk om voldoende data te 

verzamelen voor een statistische verband legging. Er zijn het afgelopen decennium 

grootschalige projecten uitgevoerd om gegevens van patiënten met een OS op 

wereldwijde schaal te verzamelen. Door in een patiënten cohort een groter aantal 

DNMs in één gen te vinden dan verwacht maakt het mogelijk om dat gen met OS 

te associëren.

Dit proefschrift integreert menselijke genoom gegevens met 3D-eiwitstructuren 

met een focus op structuur domeinen. Deze integratie maakt de detectie van 

ziekteverwekkende effecten van mutaties mogelijk en heeft bijgedragen tot 

het ontdekken van 36 kandidaat-ziektegen associaties voor OS. Deze nieuw 

geassocieerde genen maakten de diagnose direct mogelijk voor 500 families die 

deel uit maakte van de studies en er zullen er wereldwijd nog veel meer volgen.

Het meta-domein framework en de MetaDome webserver

1-2% van het menselijk DNA codeert voor eiwitten. Van deze eiwitten wordt 42% 

gevormd door eiwitdomeinen. Domeinen zijn kleine onderdelen van een eiwit met 

een specifieke structuur en functie. Vaak kun je over verschillende eiwitten een 

vergelijkbaar structureel domein terugvinden die homoloog zijn.

In Hoofdstuk 2 introduceren we meta-domeinen als een framework die 

samenvoeging van vergelijkbare menselijke Pfam-domeinen mogelijk maakt. Deze 

meta-domeinen worden geannoteerd met: gegevens uit pathogene en algemene-

populatie variatie databases, locaties op het genoom, evolutionaire conservering, 

enz. Meta-domeinen maken overdracht van informatie tussen equivalente 
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residuen in verschillende eiwitten mogelijk. In Hoofdstuk 3 presenteren we de 

MetaDome webserver die dit concept gebruikt om de analyse te ondersteunen van 

genetische varianten met onbekende klinische significantie. MetaDome maakt het 

abstracte concept van meta-domeinen algemeen beschikbaar voor onder andere 

wetenschappers met een beperkte bioinformatica-expertise.

Ontdekking van nieuwe kandidaat ziektegenen voor 
ontwikkelingsstoornissen en de ziektemechanismen daarvan

In Hoofdstuk 4 hebben we ‘spatial clustering’ gebruikt op de DNMs uit publiekelijk 

beschikbare OS-patiëntgegevens om clusters van missense DNMs in vijftien 

genen te identificeren. Drie van deze genen waren niet eerder geassocieerd 

met OS. Analyse van deze clusters in de 3D-eiwitstructuur suggereerde een 

ziektemechanisme van niet-haploinsufficiëntie.

In Hoofdstuk 5 beschrijven we hoe een unieke internationale samenwerking 

tussen het Radboudumc, GeneDX en het Wellcome Sanger Institute leidde tot 

het gezamenlijk combineren van DNMs van 31.058 patiënten met een OS. In het 

resulterende artikel in Nature beschrijven we een reeks innovaties die alleen 

mogelijk waren dankzij de grote omvang van deze dataset. Er konden 285 OS-

associaties met genen gemaakt worden, waarvan er 28 voorheen nog niet waren 

ontdekt. We schatten dat voor minstens ~1.000 genen er nog een OS-associatie 

ontbreekt en dat geeft aan hoeveel werk er nog ligt. Dit artikel zal dienen als een 

referentiepunt om de genomische architectuur van DNMs en OS in de komende 

jaren beter te begrijpen.

In Hoofdstuk 5 hebben we ook waargenomen dat meer dan tweederde van alle 

missense DNMs in OS-geassocieerde genen worden gevonden in eiwitdomeinen, 

waarvan ionentransport domeinen, ligand-geactiveerde ionkanalen, proteïne 

kinase domeinen en kinesine-motor domeinen het meest verrijkt zijn. In Hoofdstuk 
4 concludeerden we dat met ziekte geassocieerde DNMs de neiging hebben om 

te clusteren in de 3D-eiwitstructuur, en in Hoofdstuk 6 keren we deze redenering 

om en gebruiken we de clustering van DNMs in 3D-eiwitstructuren als een indicatie 

van hun ziekteassociatie. Na het verwijderen van de genetische redundantie van 

de 45.221 DNMs uit Hoofdstuk 5, vond MetaDome drie missense DNM-hotspots 

in het ionentransport domein. Deze werden gevonden in 25 genen, waarvan er 

al 19 een OS-associatie hadden. Menselijke analyses van de 3D-eiwitstructuren 
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suggereerden een vergelijkbare functionele rol voor het originele residu op elke 

hotspot, wat vervolgens suggereert dat de DNMs in de zes nieuwe genen ook 

schadelijk zijn. Hiermee laten we dus in Hoofdstuk 6 zien dat een nieuwe manier 

van data-integratie leidt tot een verbeterde interpretatie van de pathogeniteit van 

genetische varianten.
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Brunner, you have a talent in making people feel included by being approachable 
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Brooke, I recall meeting you for the first time at an end-of-the-month research 
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question, it turned into an hour-long talk that switched topics between science, 

teaching, life, relationships, and everything else. We found each other in similar 

challenges faced. I will always remember your wedding party as the one that 

had the most and best dancing! Let’s soon plan the rollercoaster theme park we 

always talked about. Dario, somehow you have the habit of always being busy 
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social interaction we didn’t realize we needed. Dimitra, you always brightened 
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up my day with clever remarks and Greek philosophy. Stéphanie, our very open 

discussions changed my perspective and made me so much more ‘woke’. Thank 

you for acknowledging my blunt questions with your well thought-out answers. I 

have come to know you as an intellectual kind friend of many depths and one of 

the most inclusive of colleagues. Juliet, when you started we were talking a lot 
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the silent disc jockey in our room. Even though you were with us for only a year, 
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personally. You were there to celebrate moments of happiness, or provide 
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comfort when work brought me down. And no, I still don’t know the difference 
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together throughout our PhDs. You always seemed to have a bottle of champagne 
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