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10.

Propositions

Genetic tolerance indicates parts of a protein that are not important for function. (This thesis)
Most disease-causing missense mutations are found in protein domains. (This thesis)

Damaging missense mutations cluster in the 3D protein structure and can provide insights
into disease-mechanisms. (This thesis)

Missense mutations of unknown clinical significance that cluster are damaging. (This thesis)

Damaging missense mutations predict damaging effects at equivalent locations in other
proteins. (This thesis)

Genomic data growth shall uncover increasingly complex concepts that will require easily-
accessible and user-friendly interfaces. (This thesis)

Identification of increasingly rare genetic disorders will require increasingly large,
international, and interdisciplinary collaborations. (This thesis)

Genetic tolerance will take decades to reach saturation, if ever. Meta-domains can help
reach this saturation sooner. (This thesis)

“As ge niks makt, makte ok niks kapot” // “If you never attempt anything, you will never
break anything”. (Oma Lies van de Wiel-van Moorsel)

“Life is too short to drink bad beer”. (Derivative of a quote by Johann Wolfgang von Goethe)
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“We sift over our fingers the first grains of this great outpouring of information and
say to ourselves that the world be helped by it. The Atlas is one small link in the chain
from biochemistry and mathematics to sociology and medicine.”

Margaret Oakley Dayhoff (1968)
on the first Atlas of Protein Sequence and Structure
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“Bilbo: Can you promise that | will come back?
Gandalf: No. And if you do... you will not be the same.”

The Hobbit: An Unexpected Journey (2012)
conversation between Bildo and Gandalf
before Bilbo embarks on this adventure
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General introduction



Chapter 1

Proteins are fascinating, large, complex molecular machines that have developed
over millions of years of evolution. Without proteins, life as we know it would not
exist. Proteins are the work horses of the body. Antibodies recognize and bind
to viruses or bacteria to protect the host. Enzymes trigger chemical reactions
and assist in chemical processes. Messengers signal between cells. Structural
components provide structural integrity and support for cells. Transport proteins
assist in carrying chemical elements and molecules in and to other cells. Proteins
are responsible for the structure, function, and regulation of all critical processes
in every form of life. Life, however, is faced with constant selective pressures.
These selective pressures are the drivers of natural selection. Given enough time
and iterations, they lead to diversification of species in a process that is called
evolution.” Evolution on a molecular level occurs in the form of mutations that
could have a structurally altering effect on proteins. Protein structural changes
can directly affect the protein function. These changes are damaging when they
drastically disrupt the protein function and can result in reduced fitness, disease,
or, death of the host. Selective pressures favour changes that lead to higher fitness.
Most variations are neutral to fitness,? which resulted in the evolution of many
‘optimally enough’ proteins suited for a certain task. Identifying which changes
are neutral and which are damaging is one of the key challenges in modern-day
genetics and also the main motivation for this thesis.

The completion of the Human Genome Project in 2003 gave a boost to the now
approximately 22,300 protein-coding genes that have been identified in humans.>
In the almost two decades that followed, a massive accumulation of human genetic
data have become publicly available.® These genetic data have allowed scientists
to look at a fine scale of possible variations to protein-coding genes within a single
species. Of all disease-causing genetic variation discovered to date, 58% alters or
impairs the protein structure.” The accumulation of genetic information from a
multitude of human individuals have led to notions of ‘tolerated genetic variation”:
variation that occurs in high-frequency in the general population and are therefore
likely harmless.®-"

Despite these vast resources, it remains a challenge to predict if genetic variation
is damaging. Small changes in the genome can have a major effect on a protein’s
structure and thus function. To begin to understand why, it is crucial to first learn
how proteins are constructed.
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General introduction

What makes a protein?

Proteins consist of hundreds to thousands of smaller units called amino acids.
All amino acids contain an amino (NH2) group and a carboxyl (COOH) group.
The amino group can bind via a peptide bond to the carboxyl group of another
amino acid to form a dipeptide. To form a protein, multiple amino acids are
chained together in a polypeptide. The first residue in a polypeptide is called the
N-Terminus, and the last residue is called the C-Terminus. When represented
in the form of letters a polypeptide is called a protein sequence, or the primary
protein structure (Figure 1).'2

There are 22 different proteinogenic amino acids, each commonly denoted by a
unique 1-, or, 3-letter combination (A/Ala, C/Cys, D/Asp, E/Glu, F/Phe, G/Gly, H/
His, I/lle, K/Lys, L/Leu, M/Met, N/Asn, O/Pyl, P/Pro, Q/Glu, R/Arg, S/Ser, T/Thr, U/
Sec, V/Val, W/Trp, Y/Tyr). Every amino acid has the same neutral backbone and a
characteristic side-chain (or R-group). The side-chain determines the amino acid
type and has a unique set of different structural and chemical properties.

The importance of side-chains

The side-chains determine the amino acid type. The properties of side-chains
shape the protein, and these properties can be of structural or chemical nature.
These properties play an especially important role in the folding of the primary
protein structure into a tertiary structure. Side-chain features that are particularly
important for the structural formation or function of the protein are the size,
electrical charge, presence of a reactive sulphur atom, ability to form salt bridges,
overall atomic rigidity, and, hydrophobicity.
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General introduction

Protein folding is the process in which a polypeptide chain conforms into a
3-dimensional molecule: the tertiary structure. The tertiary structure shape is
determined by the environment and the chemical and structural properties of
amino acids in the polypeptide. The tertiary protein structure consists of three
generic patterns, a-helices, B-sheets, and, loops. These generic patterns are called
secondary protein structures (Figure 2A). The type of secondary protein structure
is influenced by the forming of hydrogen bonds between amino acids. a-helices
are right-hand-coiled structural conformations that consist of a multitude of
repetitive patterns: four amino acids, wherein each first and last residue forms a
hydrogen bond using their backbone. 3-sheets consists repeated stretched of 3 to
10 amino acids, called B-strands, that are interconnected via hydrogen bonds and
assisted by loops and turns.

The tertiary protein structure (Figure 2B) is the native conformation of a single
polypeptide chain. If multiple polypeptide chains are involved to form a shared
conformation, it is called a quaternary protein structure (Figure 2C). In the
components of the quaternary protein structure are not held together by covalent
bonds. Instead they are bound by hydrophobicity, salt bridges, or, disulphide
bridges, to name a few. The forming of a quaternary protein structure is also
directly influenced by the side-chain properties of the amino acids. Quaternary
protein structures that are formed by multiple proteins are commonly referred
to as polymers, with 1 = monomer, 2 = dimer, 3 = trimer, etc. And, in the case of
dimers or larger polymers, homo- or hetero- prefixes indicates if the quaternary
structure is made from identical (homo) or different (hetero) polypeptides. In
Figure 2C an example of a homo-tetrameric protein structure is provided. In this
tetrameric conformation, four identical protein structures join together to form
the pore-like structure necessary for channelling K* ions. All of the structural
examples in Figure 2 are taken from a mammalian voltage-gated K* channel in
an inactivated state (PDB: 5WIE'). This particular protein structure was used to
model and analyse mutation hotspots in Chapter 6.
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General introduction

The complete solved crystal structure of a mammalian voltage-gated K+ channel in an inactivated state (chain A in PDB:5WIE). The yellow balls on the
top right are potassium ions moving through the channel.
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General introduction

How does the genome relate to the protein structure?

The genome is the collection of all genetic information necessary for the building,
maintaining, and, reproduction of organisms. Itis passed from parents to offspring.
In cellular organisms, like humans, every cell has a copy of the genome. The
genome is contained in multiple large molecules that are called chromosomes.
The chromosomes are composed of Deoxyribonucleic acid (DNA) molecules. DNA
consists of even smaller molecules called nucleotides which are chained together
in the shape of a double helix. There are four different nucleotides (A, C, T, G)
and each nucleotide is paired with another nucleotide to form base pairs that
constitute the double helix shape.”™ Similar to the primary protein structure,
where the sequence consists of amino acids, the DNA can be represented as
a sequence of letters corresponding to the nucleotides. The human genome
consists of 23 chromosome pairs, totalling to 46 chromosomes. Half of these
are inherited from the father and the other half from the mother. Combined, the
chromosomes contain approximately 6 billion base pairs. Potentially, a change
to any one of these 6 billion base pairs can influence the entire organism. In
the human genome most of the essential information is located in regions that
are called genes. A recent assessment of the human genome identified 60,669
different genes, of which 32.9% are protein-coding, 42.1% non-coding RNA genes,
and, 24.3% pseudogenes.’® The protein-coding genes make up roughly 1-2% of
the entire genome.? They encode the amino acid arrangement of every protein in
human cells.

Protein-coding genes are blueprints

Protein-coding genes describe how to construct a primary protein structure via
sets of instructions. These genes ensure the consistency of how proteins are
composed throughout all cells of an organism. The genomic structure of protein-
coding genes in eukaryotes consists of regulatory sequences and the open reading
frame. The regulatory sequences consist of enhancers, silencers, promoters
and the 5" and 3' untranslated regions (UTR). These parts of the protein-coding
genes primarily regulate the expression level of proteins. Additionally, they
contain instructions for isoforms in the form of transcripts. These isoforms are
alternative protein sequence conformations. According to GENCODE there are
84,068 possible transcripts for the 19,959 curated human protein-coding genes
(GENCODE Release Version 34).'® In theory, these transcripts could each result
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Chapter 1

in a different protein sequence. However, most differences between transcripts
are in the non-coding UTR regions and will therefore not affect the final protein

sequence.”

The open reading frame is composed of regions called introns and exons. Introns
are non-coding and important for isoform formation and the protein expression
level. Exons code for parts of the amino acid sequence via triplets of nucleotides
called codons. Each codon directly correspond to one of 20 amino acids or indicate
the termination of the coding region via a ‘stop-codon’.'® The amino acid sequence
is constructed from a protein-coding gene with three steps called “central dogma
of molecular biology”. Protein folding could be seen as the final step (Figure 3):®

1. Transcription: The 5’UTR, the introns and exons and 3'UTR are transcribed
into precursor messenger RNA (pre-mRNA). In this step DNA, with the
help of ribosomes, is copied into an RNA representation.

2. Post-transcriptional modification: The intronic regions are removed from
the pre-mRNA, this way the exons form the complete, untranslated,
protein sequence in RNA, which is called mature messenger RNA (mRNA).

3. Translation: the mRNA is translated into a chain of amino acids (a
polypeptide).
4. Protein folding: The polypeptide chain conforms into the tertiary protein

structure.

How can changes in the genome affect proteins?

Genetic variations are alterations to the nucleotide mark-up of the genome. These
variations can affect only one nucleotide (e.g. transitions), one or a stretch of
nucleotides (e.g. insertions and deletions also called indels, or substitutions), or
affects a region of nucleotides (e.g. structural variations). Structural variations can
be deletions, insertions, inversions, duplications, or, copy number variations. If
any of these variations occur within the region of a protein-coding gene, they may

have a direct effect on the protein.
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Regulatory sequence

Regulatory sequence

1 — |

Enhancer Enhancer

/silencer Promoter S5'UTR Open reading frame 3'UTR /silencer

I I I —
Proximal Core Start Stop Terminator
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Transcription

Exon Exon Exon
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Intron Intron

Protein coding region
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MRNA " pqst-transcription
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Translation
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Figure 3.

The genomic structure of a protein-coding gene and the different steps to form the primary protein structure. (Image courtesy of Thomas Shafee,
adapted from Wikimedia and licensed under Creative Commons CC BY-SA 4.0; Image of the protein structure was created using YASARA™ modeling

software for PDB: 5WIE™).
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Chapter 1

Most of the work in this thesis is focused on single nucleotide variants (SNVs) that
occur within protein-coding regions. There again is specific jargon for different
SNVs. If an indel SNV in the coding region affects the reading frame of codons
it is called a frameshift variation, and, can result in an entirely different protein
sequence. Substitution SNVs can have multiple effects on the protein. If the
substitution does not change the amino acid translation it is called synonymous,
otherwise itis called missense. When the translation is changed to a stop codon, it
is called nonsense or stop-gained (Table 1). Nonsense and missense variants are
also referred to as non-synonymous variations.

Table 1. Example of single nucleotide variants in codons and the effect on encoding. (Structural
formula representations courtesy of NEUROtiker, adapted from Wikimedia and are licensed under
public domain).

No variation Synonymous Nonsense Missense
Codon CGA CGG TGA GGA
Arginine Arginine Stop- Glycine
Translation introduced
et | P L A i
N N H N N H OH
e NH, MR NH, No amino acid NH,

How genetic variations in protein-coding genes can result in disease

The amino acid composition of proteins is encoded in protein-coding genes, and,
therefore, the genetic code plays an important role in dictating the composition of
a protein. Genetic variations may affect proteins in a positive, neutral, or, negative
way. Positive and negative changes can alter the protein in a loss-of-function
(LoF) or a gain-of-function (GoF) effect. A variant with a negative effect is called
damaging or deleterious. If the damaging variant leads to disease, it is called a
pathogenic or disease-causing mutation.

Nonsense variants generally have the largest effect on the protein structure.
These variants induce the termination of the open reading frame. The result
may be a partial structure, that is often ‘cleaned up’ by a process called nonsense
mediated decay (NMD). If the partial protein is cleaned up by NMD there is no
protein expressed at all.?° This can affect the protein expression level also called
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General introduction

the dosage. Disease may occur due to this lack of dosage, and, if this is the
case, the mechanism of disease is called haploinsufficiency (HI). The effect of a
missense variant greatly depends on the location of that variant in the protein
structure and the difference between the original amino acid residue and the
one it changes into. If the residue introduced disrupts the folding of the protein
structure, the structure could also be cleaned up in the NMD process. Therefore,
missense variants may trigger a Hl disease-mechanism. Alternatively, damaging
missense variants that do not disrupt folding may still disrupt the function, or
functional sites, of the protein. If this leads to disease, the disease-mechanism
is called non-haploinsufficiency (NHI). Determining if variants are damaging, and
how, can require the need for functional testing and replications studies, and,
therefore is often a laborious task. In Chapter 4 and 6 we show that clustering of
missense variants found in patient with neurodevelopmental disorders indicate a
likely disease-mechanisms and help identify candidate disease-genes.

Identifying genetic variations in a diagnostic setting

In the two decades following the completion of the Human Genome Project,
the technology involved in analysing the human genome advanced immensely.
The Human Genome Project provided the first version of the human reference
genome.>*The reference genome can be used to identify genetic variation. Genetic
variations are differences in nucleotide composition of a patient compared to the
reference genome. To find these differences, whole exome sequencing (WES)?' or
whole genome sequencing (WGS)?? can be used. A patent undergoing WES or WGS
will result in many small genome sequence pieces that are called reads. These
reads are then mapped to the reference genome. The total number of mapped
reads at the same location indicates the quality and certainty of any genetic
variants that are identified at that location. Nowadays, whole exome sequencing
and whole genome sequencing are part of routine diagnostic protocols.?*?* Since
the first version of the human reference genome, disease-gene associations have
increased by a four-fold.?

The first step in a present-day genetic diagnostic procedure is to identify all
genetic variation in a patient. The second step is variant effect prediction. In a
diagnostic setting the goal for variant effect prediction is to find the variant, or
variants, that explain the phenotype of the patient. Typically each sequenced
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individual has between 20,000 and 26,000 genetic variants in the coding
regions, which can be reduced to 150-500 candidate variants by various filtering
strategies.?® This commonly includes considering variants that alter the protein-
coding region, are rarely encountered in the general population, are located in a
previously disease-associated genomic regions, or, are present in genes that have
a specific biological role. Computer-aided variant effect predictors have evolved
over the last two decades as well. Deleteriousness predictors, such as SIFT?,
Polyphen-228 and CADD%, make use of an aggregate of information resources
and proven metrics to determine the likelihood of a variant to have a deleterious
effect. HOPE® attempts to explain the functional effect of a missense variantin the
protein structure. Despite these predictors, it remains challenging to accurately
diagnose patients. Another way to gather evidence for diagnosis is to combine
genetic data from patients. In Chapter 5 we combined genetic data from 31,058
patients with developmental disorders. By combining this data, we found 285
genes significantly enriched with rare mutations. Of these, 28 genes were not yet
associated to developmental disorders.

What can we learn from evolution?

The selective pressures that drive evolution induce changes in the genome. These
changes may have an effect on the protein structure and function. Given enough
iterations these changes enable diversification into different species.®' The effects
of evolutionary-driven genetic variations on genomes are an active topic for
scientific studies. Changes that occurred only a short while ago, or hundreds, or
millions of years ago can be traced back by sequence analysis. There are many
ways to approach this resource of information. For example, these data help
estimate how, and when exactly, species diversified by constructing genome-
based phylogenetic trees.323 From a shorter time-perspective these data help in
uncovering history of human geological migration patterns.>* Or these data help
explain why certain African populations carry a disease-enabling copy of the gene
that causes cycle cell anaemia, as it offers protection against malaria.*

Genetic changes can be damaging, neutral, or, beneficial. There are many possible
exceptions and it is difficult to identify which is which. The genome is so complex
that not every change will have an everlasting negative or beneficial effect for the
following generations. Instead most changes are expected to be neutral.? The most
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General introduction

common way to predict likely damaging changes is by evolutionary conservation.>®
Evolutionary conservation can be computed by comparing lack of changes
between highly similar proteins from different species.’” Popular pathogenicity
predictors make use of evolutionary conservation (e.g. SIFT?, Polyphen-22¢ and
CADD?). The underlying assumption of evolutionary conservation is that there
are a great number of iterations needed to diversify into different species. If the
residues at equivalent proteins rarely change during this diversification, then they
are probably important. On the other hand, if these residues change often, they
are likely neutral.

Highly similar sequences are necessary to compute evolutionary conservation. The
de facto standard to find analogy in sequences is the basic local alignment search
tool (BLAST).3® BLAST requires an input sequence and then scores sequences
based on the similarity to that input sequence. Analogy is often an indication
of homology. Similar sequences (>25% sequence identity) can indicate a shared
evolutionary ancestor and are called homologous.3” Homologous relationships can
accommodate the transfer of information, and help elucidate important residues
and regions within sequences. Transfer of information can be achieved via
sequence alignment or multiple sequence alignment (MSA). Sequence alignments
are generally made on similar sequences via Clustal®. MSA allows nucleotides or
amino acids to be aligned to corresponding positions (Figure 4A). In homologous
proteins, mutations at corresponding locations across an MSA are known to result
in similar effects.*

Evolutionary conservation can be calculated by considering the amount of different
amino acids encountered. This is computed per column in an MSA, and preferably
calculated over homologous protein sequences from evolutionary distant species.
The result per position can be expressed as relative entropy®. Using relative
entropy, in figure 4B, the letter-size indicates how conserved residues are based
on the MSA from Figure 4A.
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General introduction

The Pfam HMM sequence logo generated via the Skylign tool*? for the EGF-like domain (PFO0008). The height of each residue is based on the
inverted relative entropy for that position. The height indicates how conserved each residue is in multiple sequence alignment from 4A. In this
example the big C's correspond to highly conserved cysteines. The thin red vertical lines in the sequence logo denote regions prone to contain
deletions and the orange lines are regions prone to insertions.
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General introduction

Protein domains and homology

Protein structure is more evolutionary conserved than sequence.* The protein
structure determines the function. Protein functions rely on elementary functional
elements. These elements are for example the binding of an ion, voltage-gating,
a specific structural shape, etc. These elementary functions have been optimized
over the course of evolution. When these elements have a similar protein
structure and/or sequence they are called protein domains. Protein domains can
be detected from sequences by locating evolutionary conserved regions. When
these evolutionary conserved regions have a similar sequence composition and/
or structure, then these often have the same function. When these regions are
homologous, and can be located in multiple proteins, they can be part of a protein
domain family.

The example in Figure 4 is an EGF-like domain (PFO0008) that we analysed in-
depth in Chapter 2 of this thesis. This is a structural domain and most parts in
this protein domain, from a sequence perspective, are variable (Figure 4B). The
large C's, however, indicate conserved cysteines. The structural importance of
the conserved cysteines can be seen in Figure 4C as they form rigid disulphide
bridges. In EGF-like domains, any changes to the conserved cysteines will cause
loss of a stabilizing disulphide bond necessary for the structure of the domain.*

Understanding the human genome from an evolutionary perspective

The UniProt Knowledgebase (UniProtkB) currently contains 37,670 proteomes
of which 1,832 are part of the Swiss-Prot collection that have been reviewed by
experts (release 2020_03).“6 Evolutionary conservation between-species can be
computed from these data. This helps to discover homologous genes, proteins
and protein domains. Most proteomes contained in the UniProtKB result from a
single to a few sequencing samples. It will require considerably more sequencing
efforts to analyse the within-species variability for each of these proteomes.
For humans, however, sequence data is becoming more readily available. This
is gradually leading to a more accurate estimation of within-human variation.
Patients and controls involved in genetic studies can consent to their genetic
data be used for scientific purposes. Contributing to the formation of large
population-size catalogues of genetic variation.#’->' The largest dataset to date is
gnomAD, representing 141,456 individuals.>' From these datasets, the frequency
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of rare and commonly encountered genetic variations can be determined. These
measurements have led to the notion of genetic tolerance. Genetic tolerance is a
measurement from awithin-species perspective, and, has alikeness to evolutionary
conservation. However, it is different in that evolutionary conservation is based
mostly on single sequence comparisons between related species. In genetic
tolerance there are hundreds of thousands of sequences that we can compare
from a single species. This abundance of data can uncover much finer details
than ‘conserved’ versus ‘variable’. Genetic tolerance can indicate positions and
regions that are highly variable or not variable at all. Genetic tolerance can help to
determine the likely pathogenicity of genetic variants.?652

In recent years, metrics such as RVIS®, subRVIS® and pLI*® have been developed that
provide an indication of potential deleteriousness of variants. Perhaps inspired by
evolutionary conservation, these methods use the absence of population-based
variation to determine variant deleteriousness. Genes vary in their tolerance to
variation and this can be used to determine their essentiality.® Regions within
genes vary in tolerance to variation as well. Regions that are intolerant to variation
correspond to important parts of the gene and disease variants are more likely
found within these regions.>'° For example, Figure 5 depicts a ‘tolerance landscape’
for the gene LMX1B created by our webserver MetaDome (Chapter 3). The regions
that are intolerant to missense variants correspond to the protein domain regions

and where disease-causing variants are encountered.
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Intolerant Tolerant

Protein

Figure 5.

Visualization of Tolerance Landscape of LMX1B (transcript: ENST00000355497.5, protein: 060663-3) created by MetaDome>: (accessed July 23 2020).
Tolerant regions are coloured blue and intolerant regions red. The light-green blocks are LIM domains (PF00412, p.56-p.110 and p.115-p.172), the
dark-green a Homeobox domain (PF00046, p.220-p.276). The 12 red bars indicate locations where pathogenic variants are recorded in ClinVar54,
corresponding to 6 missense (p.Cys59Phe, p.Cys118Phe, p.Arg223GIn, p.Arg246Gin, p.Arg261Cys, p.Asn269Lys) and 7 nonsense (p.Trp76%, p.GIn82%,
p.Tyr102%, p.Arg221%, p.Arg231%, p.Arg246%*, p.Arg249%). In this visualization, tolerance is based on a missense over synonymous ratio, using the
genetic variation from gnomAD.51
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Scope of this thesis

In this thesis | have combined structural biology and human genetics. | integrate
protein information with publicly available human genetic variation. This
combination allowed validation of the following hypotheses:

Hypothesis I: The parts of a protein that are tolerant to population-based

genetic variation are not important for protein function.

Hypothesis Il: Genetic variants that are damaging to a part of a protein
can be used to predict damaging effects in highly similar parts in other
proteins.

Investigating these hypotheses led to integrate human genetic data with protein
domain and protein structure information. This combination resulted in the

following chapters.

Meta-domains and the MetaDome web server

Integrating human genome data with homologous protein domains resulted in
meta-domains (Chapter 2). Meta-domains allow transfer of information between
equivalentresidues in different protein domains. This transfer of information helps
interpret genetic variation. The meta-domain concept has been implemented in
the MetaDome web server (Chapter 3).

Clustering of denovo missense mutationssuggest disease mechanisms

De novo mutations (DNMs) are rare genetic variants. In patients with developmental
disorders (DD), DNMs are the likely cause. We identified that missense DNMs
clustered in 15 genes in publicly available DD patient data (Chapter 4). Of these,
3 genes were novel DD-associations. Analysis of these clusters in the protein 3D
structure suggest an N-HI disease-mechanism.

Deleterious de novo missense mutations locate to protein domains

We formed the largest cohort to date of DNMs identified in 31,058 DD-patients
(Chapter 5). We found 285 genes significantly enriched with DNMs. Of these, 28
genes were novel DD-associations. Specifically, | showed that missense DNMs are
more likely located in protein domains. This is not the case for stop-gained and
synonymous DNMs. Furthermore, specific protein domain families are enriched
with missense DNMs identified in DD-associated genes.
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Gene DD-association based on a single de novo mutation

| combined meta-domains (Chapter 2) with the insights that missense DNM
clusters indicate disease-mechanisms (Chapter 4), and, that protein domains
are enriched with missense DNMs (Chapter 5). This led to the identification
of missense DNM hotspots in meta-domains (Chapter 6). The hotspot DNMs
were located in 25 genes. Analysis of these hotspots in the protein 3D structure
confirmed deleteriousness. Six of these genes are novel candidate DD-associations
based on a single DNM in a hotspot.

In Chapter 7 | discuss the limitations and implications of this thesis.
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Chapter 2

Abstract

Whole exomes of patients with a genetic disorder are nowadays routinely
sequenced but interpretation of the identified genetic variants remains a major
challenge. The increased availability of population-based human genetic variation
has given rise to measures of genetic tolerance that have been used, for example,
to predict disease-causing genes in neurodevelopmental disorders. Here, we
investigated whether combining variant information from homologous protein
domains can improve variant interpretation. For this purpose, we developed a
framework that maps population variation and known pathogenic mutations onto
2,750 “meta-domains.” These meta-domains consist of 30,853 homologous Pfam
protein domain instances that cover 36% of all human protein coding sequences.

We find that genetic tolerance is consistent across protein domain homologues,
and that patterns of genetic tolerance faithfully mimic patterns of evolutionary
conservation. Furthermore, for a significant fraction (68%) of the meta-domains
high-frequency population variation re-occurs at the same positions across domain
homologues more often than expected. In addition, we observe that the presence
of pathogenic missense variants at an aligned homologous domain position is
often paired with the absence of population variation and vice versa. The use of
these meta-domains can improve the interpretation of genetic variation.
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Introduction

Next generation sequencing technologies now allow for the comprehensive
identification of all genetic variation in an individual, and exome and genome
sequencing are increasingly being used in clinical care to provide a diagnosis for
patients with a genetic disorder.224 The interpretation of the large number of
genetic variants present in the exome or genome of a patient is now the major
remaining challenge.?® Filtering strategies that reduce the number of candidate
disease-causing variants make use of information such as the occurrence of
variants in the normal and in the diseased population, knowledge about the role
of genes in disease, and the predicted effect of specific mutations.3 Algorithms
such as Polyphen-22¢ and CADD? are able to predict the pathogenicity of individual
variants, but leave room for improvement, especially within a clinical context.>->’
Other methods have used population-wide genetic variation from healthy
individuals that is available in large public databases such as the NHLBI Exome
Sequencing Project (ESP),*® and the Exome Aggregation Consortium (ExAC)>® to
construct metrics that estimate the genetictolerance ofagene. Various studies have
shown that genetic intolerance of a gene is a strong indicator for a role in severe
human diseases such as intellectual disability and other neurodevelopmental
disorders.®%® Metrics such as RVIS® and pLI*® are now being used in conjunction
with variant pathogenicity prediction algorithms to improve the interpretation of
variants of unknown significance in patients suffering from these disorders.

The continuous growth of catalogues of human genetic variation has made it
feasible to investigate genetic tolerance at a finer scale, such as for individual
exons of a gene or even domains of a protein. This was done, for example, by
Gussow et al.®> who developed subRVIS and found that tolerance within a gene
varies, and that specific protein domain coding parts of a gene are sometimes
much more intolerant than the whole gene. Moreover, the authors found that
intolerance to genetic variation within genic sub-regions significantly correlates
with reported pathogenic mutations. These patterns of region-specific variation in
genetic tolerance were also used by Ge et al.® to detect missense-depleted regions
to confirm the pathogenicity of individual variants of unknown significance.

Since its introduction, one of the applications of BLAST*® was to identify
homologous proteins. Mutations at corresponding locations in these homologues
were found to result in similar effects on protein stability.** Protein domains are
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especially interesting as they have homologous relationships spanning many
proteins. Because of this, protein domains can also have many homologues
that occur within the same species. An example of a framework that annotates
protein domains to proteins is Pfam.*' The Pfam database is a large collection of
protein domain families represented by curated multiple sequence alignments
(MSAs) and a hidden Markov model (HMM). In recent work Miller et al. combined
mutation information from different protein domain homologues to identify
mutation hotspots in cancer, and Melloni et al. used a similar approach to identify
cancer driver mutations.®*®" We hypothesized that genetic tolerance found in
the regions coding for protein domains, may be consistent across other within-
human homologues of that domain and that therefore interpretation of variants
in a protein domain can be improved by aggregating population variation over
homologous protein domains.

Materials and Methods

Mapping of human genomic variation to Pfam domains

We performed a Protein-Protein BLAST 2.2.31+% for each of the longest
translations for all 18,651 human protein-coding genes in the GENCODE Basic set
release 19 GRCh37.p13% to canonical and isoform human protein sequences in
UniProtKB/Swiss-Prot Release 2016_09 (Swiss-Prot).% We then selected the top
BLAST result with 100% identity to the query sequence and a BLAST E-value of 0.01
or less. Pfam-A 30.0*' protein domains in the matched Swiss-Prot sequences were
annotated using InterProScan 5.20-59.0.%> ClustalW2 v2.1%*° was used to create
pair-wise alignments between the gene translations and Swiss-Prot sequences.
The resulting alignment was then used to map genomic variation onto residues in
Swiss-Prot protein sequences.

Datasets of population genetic variation and disease-causing
missense variants

Population variation was obtained from the Exome Aggregation Consortium
(EXAC) v0.3.1°° by selecting all synonymous and missense variants with the PASS
filter criteria. For the creation of meta-domains we considered missense variants
from ExXAC with an allele frequency > 0.1%. For validation purposes we also used
two additional sets of EXAC missense variants having >0.5% and >0.05% allele
frequency.
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We selected a set of disease-causing missense variants from the Human Gene
Mutation Database (HGMD) 2016.2% that have disease-causing (DM) status, which
were subsequently filtered by removing all variants that are identical to PASS
variants in EXAC with >0.1% allele frequency. This filtering reduced the original set
of HGMD DM missense variants by 0.17%. In addition, we used missense variants
from Clinvar (downloaded for GRCh37 on 2017-06-15), with disease-causing
(Pathogenic) status, as an additional validation to HGMD DM variants. The filtering
of identical PASS variants in EXAC with >0.1% allele frequency, that was used for
the HGMD DM set, was applied to this set as well.

Aggregation of genetic variation into meta-domains

In order to aggregate genetic information over protein domain homologues we
considered each Pfam identifier found in more than one gene as a within-human
homologue. In this study, when we mention homologous protein domains, or
domain homologues, we refer to Pfam protein domains that are homologous in
the protein-coding regions of the human genome. For each domain found this
way, we retrieved the Pfam HMM and the domain protein sequence. We used all
the domain sequences that had the same Pfam identifier, together with the Pfam
HMM, to generate a MSA using the HMMER 3.1b2 tool.®” We used our mapping
to combine genetic variants on positions that were aligned to the same Pfam
domain positions. Variations on Swiss-Prot residues in insertions with respect to
the Pfam domain were ignored. The percentage of homologous domains aligned
to a position (MSA coverage) was determined based on the number of gaps with
respect to the Pfam domain.

Gene Ontology Biological Process enrichment analysis in protein
domains

Gene Ontology Biological Process (GOBP) enrichment analysis was performed
using the R package dcGOR 1.0.6.8

Computing genetic tolerance via the missense over synonymous
ratio
We use the non-synonymous over synonymous ratio, or d,/d, score, to quantify

genetic tolerance in genes and domains. In our setting this score is based on
the single nucleotide missense and synonymous variants (SNVs) from ExAC in a
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protein-coding region (missense ,_ and synonymous, ). This score was corrected for

)
obs’
the sequence composition of the protein coding region based on the total possible

missense and synonymous SNVs (missense,, and synonymous,):

missenseops/missensepg

dN/dS =

Synonymousobs/Synonymousbg

Consistency of genetic tolerance across protein domain homologues

We calculated the Median absolute deviation:

MAD (x) = median( | dy/ds(x;) — median(dy/ds(x)) |) to measure whether genetic
tolerance scores are consistent across homologous domains. For each domain
occurrence x; of a homologous domain group ‘x’ we calculate the difference of
d,/d. score to the median. The median of all these differences is then computed as
the MAD. The minimal and optimal value of the MAD score is zero, meaning that no
score deviates from the median. To test whether the MAD score per homologous
domain group is significantly different from another randomly selected group
of homologues, we permuted the MAD scores for each homologous domain
group using the d,/d, score of each member in that group and comparing it to
the median d,/d; of another homologous domain group that we selected via
the numpy function random.permutation in Python. This permutation test was

repeated 10,000 times.

Evolutionary conservation and population variability

We measured sequence conservation via the relative entropy per position¥ in a

multiple sequence alignment (MSA) to compute the evolutionary conservation
_y120

and population variability: relative_entropy(j) = 22k ynfey

In20
position, ‘R' is the amino acid residue type, ‘ij’ is the frequency of how often

. Here 4" is an aligned

a residue of type ‘R’ occurs at position 4. The relative entropy ranges from 0.0
to 1.0 for conserved to variable. We used the Pfam-A full alignment for each
Pfam domain to compute evolutionary conservation. We used our mappings to
assess population variability by extracting missense and synonymous variants
and their respective allele frequencies from ExAC to compute the ‘ij’ variable.
To achieve a sufficiently high MSA resolution and certainty of correct entropy we
only con-sidered positions for computing the relative entropy that had at least 25
sequences with 80% MSA coverage.

42



Aggregation of population-based genetic variation over protein domain homologues

Quantifying patterns of missense variants in meta-domains

We created a metric to quantify how often a consensus position in a meta-
domain contains identical missense variants (i.e. two or more homologous
domains wherein the aligned residues both are identical in reference and
alternative amino acid residues). We call this metric the characteristic missense
variant score: CMVS = ZL."C"—U,].
T My[J]
aligned domain position, ‘M, [j]’ are the number of missense variants found in all

Here ’LX’ is the size of meta-domain ‘X, ¥ ' is an

domain homologues aligned to position " and ‘C,[j] are the number of missense

variants in ‘M, [j]’ that are of identical change in amino acid (i.e. that have identical

reference residues and change to the same alternate residue). The NCMVS = cmvs

X

normalizes the CMVS with respect to the domain size.

We assigned values of significance to patterns of missense variants observed in
meta-domains by comparing these to permuted meta-domains resulting from
Monte Carlo experiments. In these experiments we shuffled missense variants
in each domain occurrence ‘x/. To perform this shuffling, we first estimated the
probability of a missense variant to occur in ‘x/ via % ifM,, > O,elseLir, where ’
in' are the number of aligned residues and ‘M, are Lthe number oflmissense
variants found in domain ‘x/. Then we estimated the probability for any missense

variant to occur on an aligned position ' by considering the codon of that position
# possible_missense(x;[j]) FinaIIy

9 ' '
missense variants on the domain occurrence by combining these two probabilities

we distributed

with respect to the codon table:

and assessing each possible missense variant. The distribution of missense
variants was subsequently used to reconstruct a permuted meta-domain over
1,000 experiments for each meta-domain.

The patterns of missense variants across homologues were then tested for
significance in two different ways. First we computed per aligned position the ratio
of missense variants observed in contrast to the number of domain occurrences
aligned. We checked if a position is significantly enriched for either the reference
allele or the missense variant allele as compared to the same position in the
permuted meta-domains. We report the meta-domains for which more than 75%
of the positions are significantly different from the permuted meta-domains.
Secondly, we tested whether the entire meta-domain is significantly enriched
for identical variants via NCMVS as compared to the permuted meta-domain. In
both cases we made our comparisons with the Welch's t-test and used Bonferroni
correction for multiple testing.
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Results

In total 16,684 GENCODE genes were mapped to Swiss-Prot protein sequences
and annotated with protein domains from Pfam (Methods). We found 5,250 Pfam
domains spanning 33,638 domain occurrences in these genes, of which 30,853
made up 2,750 within-human Pfam domain homologues (Supp. Table S1). We
found 961 Pfam domain homologues to occur in exactly two different genes and,
on average, a within-human homologous protein domain occurs in at least six
different human genes. The most prevalent domains were the “KRAB domain”
(PF01352), “Zinc finger, C2H2 type” (PF00096) and “Protein kinase domain”
(PFO0069), each being present in more than 300 different human genes. Pfam
protein domains covered approximately 41% of coding sequences of the 16,684
genes. In total 1,493,414 synonymous, 2,892,092 missense variants from ExAC,
58,968 DM missense variants from HGMD, and 14,016 Pathogenic missense
variants from ClinVar are present in the coding regions of our set of genes. 71%
of disease-causing missense variants from HGMD and 72% pathogenic missense
variants from ClinVar occur in Pfam domain regions (Supp. Table S2).

Tolerance to genetic variation of protein domains

Regions that code for protein domains are sometimes much less tolerant than
the whole coding region of a gene.® Therefore, we first wanted to test how similar
tolerance patterns in protein domains are to their respective genes. We used the
population-based variation from EXAC to compute the ratio of missense over
synonymous variants (d,/d,). This, we used as a measure of genetic tolerance
scores for all genes and Pfam domains (Supp. Data S1 and S2; Methods). We
compared the tolerance measured in genes of different gene sets that are
known to have a particular pattern of genetic tolerance,* to the tolerance of the
regions with protein domains in these genes. We found that protein domains in
genes known as intolerant, such as housekeeping genes® and genes involved
in neurodevelopmental disorders,”® are indeed intolerant too (Welch's t-test
p=4.33e-61 and p=5.24e-57 respectively; Supp. Table S3, S4). Conversely, we
found that domains in genes that are known to be tolerant to protein truncating
variation and variation in general” are also tolerant to missense variation (Welch’s
t-test p=7.42e-23; Supp. Table S3 and S4; Figure 1a and 1b). Thus we find that
protein domains have a similar trend of tolerance as their genes.
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After establishing that genetic tolerance of a domain mimics that of its respective
genewewondered whether d,/d, scores are consistentacrossdomainhomologues.
We used the Median Absolute Deviation (MAD) computed over the homologues
of a domain to test for the consistency of genetic tolerance (Supp. Data S3;
Methods). We find that 2,741 out of 2,750 (99%) aggregated homologues show a
consistent pattern of d,/d. scores as compared to what may be expected by chance
(Welch's t-test p<0.05, Bonferroni corrected; Methods; Supp. Table S5; Figure 1c).
The most consistently intolerant domain was the “SRF-type transcription factor
(DNA-binding and dimerisation domain)” (PFO0319) whereas the “Keratin, high-
sulphur matrix protein” (PF04579) is the most consistently tolerant domain (Supp.
Table S6, S7). These results show that domains have tolerance patterns that are
consistent over homologues, and thus that genetic variation in one protein domain
is therefore not fully independent from the variation measured in the homologues
of that domain. This potentially allows us to aggregate variant information across
protein domain homologues.

Interestingly, enrichment analysis for Gene Ontology Biological Process (GOBP)
on the top 5% of most intolerant domains (n = 134) found that these are strongly
enriched for biological processes such as chromatin condensation, chromosome
organization and DNA packaging (p=5.90e-08, p=7.10e-05, p=1.10e-05 respectively,
Supp. Data S4). This connection to chromatin remodelling has also been observed

among dominant genes for neurodevelopmental disorders.”>74
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A. Tolerance in protein coding genes
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< Figure 1. Tolerance in genes, domains and domain homologues

A.) Tolerance to normal genetic variation as measured via the d,/d, ratio (Methods). A higher
d\/d; ratio means that the gene is more tolerant to genetic variation and vice versa. From left
to right data is presented for all 16,684 genes (blue), 398 genes involved in neurodevelopmental
disorders (green),’® 361 housekeeping genes (red),% 157 loss-of-function tolerant genes (purple).”’
All groups are significantly different (Supp. Table S3). B.) As A. with the exception that the d,/d,
ratio is now computed only for domain regions. All 33,638 domains (blue), 1,302 domains in genes
involved in neurodevelopmental disorders (green), 811 domains in housekeeping genes (red), 358
domains present in loss-of-function tolerant genes (purple). All groups are significantly different
(Supp. Table S4). C.) The consistency of d,/d, scores across homologous domains computed via
the MAD of the d,/d, (Methods). The lower the MAD score the more consistent is the d,/d; ratio.
There are 2,750 Pfam domains that have homologues in our set of genes with a total of 30,853
occurrences (blue). Of the Pfam domains, 383 have a homologue occurring in a gene involved
in neurodevelopmental disorders (green), 223 have a homologue occurring in a housekeeping
gene (red), and 178 have a homologue occurring in a loss-of-function tolerant gene (purple).
The permuted domains (yellow) consists of 27,500,000 permutated MAD scores that resulted by
computing the MAD score using the median d /d of another Pfam domain (Methods). All groups
have been found significantly different from the permuted domain group (Supp. Table S5). The
impact of different domain sizes on the MAD score is minimal (Supp. Figure S5 and S6).

Population variability across domain homologues mimics
evolutionary conservation

Although many methods have made use of population-based genetic variation
to assess genetic tolerance, it has remained unclear to what extent population
variability complements information from evolutionary conservation. Within-
human protein domain homologues offer the unique opportunity to answer this
question. We compared the consistency of population-based genetic variation with
evolutionary conservation across homologous domain positions by investigating
81 Pfam domains that have at least 50 homologous instances in our set of human
protein-coding genes, twice of what we need to ensure high-quality alignments
(Methods). In total, for 6,536 positions of these 81 domains we measured relative
entropies based on population and evolutionary variation in 14,059 human
domain instances. We observe a high degree of correlation between these two
groups (Pearson = 0.97, p-value < 1e-308; Methods; Figure 2a). We validated this
result further by splitting the population-based entropies evenly into two separate
groups, each consisting of 25 or more homologous instances. This way we can
test for any noise in the computation of within-human conservation. Again, the
relative entropies results in an almost perfect correlation (Pearson = 0.96, p-value
< 1e-308; Figure 2b). These results show that variation in the human population
measured across homologous protein domains faithfully mimics evolutionary
conservation, thereby providing support for our proposed approach to aggregate
genetic variation across domain homologues.
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Evolutionary vs within-human conservation Within-human vs within-human conservation
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Figure 2. Evolutionary conservation and within-human conservation in Pfam domains

For 81 domains that have 50 or more homologues within the human genome we computed the
relative entropy to measure the conservation of amino acid residues per position in these domains
for both evolutionary conservation based on Pfam and within-human conservation based on
EXAC (Methods). In both plots the x and y-axis represent the relative entropy for a single position
in a domain that ranges from 0.0 to 1.0; conserved to variable. A. On the y-axis evolutionary
conservation is represented by the relative entropy per position based on Pfam. The x-axis shows
variability measured solely in the human genome, based on relative entropy computed from
EXAC. These two measurements show almost perfect correlation. (Pearson correlation coefficient
= Pearson = 0.97, p-value < 1e-308). B. A validation of the results presented in A where we split the
relative entropy measured solely in the human genome in two, hereby comparing the conservation
solely between human protein domains. Again we observe an almost perfect correlation (Pearson
correlation coefficient = 0.96, p-value < 1e-308).

To establish whether population variation adds additional information for variant
interpretation compared to evolutionary conservation we assessed how disease-
causing and population-based missense variants are distributed with respect
to evolutionary conservation. We expected to find that positions containing
disease-causing variants are conserved in general, whereas positions with genetic
missense variants common in the human population are expected to be variable.
Therefore we investigated 17,195 positions in 1,079 Pfam domains with 31,732
disease-causing missense variants from HGMD. Contrary to what we expected,
more than 54% of the positions with a disease-causing missense variant were
found to be evolutionary variable with a relative entropy of 0.5 or higher (Figure
3a). The local maxima, observed between 0.0 and 0.1 relative entropy in Figure
3a, was expected to degrade gradually for higher levels of entropy. As this is a
measurement on protein domains, we hypothesize that this local maxima is
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caused by mutations that affect active site residues. In line with our expectations,
when we performed the same analysis for positions with missense variants that
have >0.1% allele frequency in ExAC, we found that 77% of these positions was
highly variable (Figure 3b). These results highlight that evolutionary conservation
is not the perfect indicator for pathogenic mutations, and that population-based
genetic tolerance scores may function as a complementary approach in variant
interpretation.

A. Positions with disease-causing missense variants B. Positions with population-based missense variants
with respect to evolutionary conservation with respect to evolutionary conservation
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Figure 3. Number of missense variants per position in a meta-domain in perspective of
conservation

Plotted here is the binned distribution of positions that contain one or more missense variant of
interest with respect to the evolutionary conservation of the position where these variants occur.
The x-axes are denoted by “Relative entropy (Pfam)” and the y-axes are marked as the overall
percentage of these positions. The figure shows that disease-causing missense variants also affect
very variable sites. A. 17,195 different positions spanning 1,079 Pfam domains. On these positions
31,732 disease-causing missense variants from HGMD were found in 22,651 domain occurrences
in the human genome. Of these positions, 54% have relative entropy 0.5 or higher. B. 13,571
different positions spanning 1,965 Pfam domains. On these positions 17,258 missense variants
with an allele frequency above 0.1% in EXAC were found in 27,767 domain occurrences. 77% of
these positions have relative entropy 0.5 or higher.

Creation of meta-domains by aggregating genetic variation over
domain homologues

Based on our results that genetic variation is consistent across human protein
domain homologues, and that population-based genetic variation correlates
faithfully with evolutionary conservation, we hypothesized that genetic variation
can be aggregated across homologous domains to provide a more detailed
map of genetic variation. Hence, we projected disease-causing and population-
based missense variation found in human protein domains onto Pfam domain
consensus positions giving rise to a “meta-domain” (Methods; Figure 4). In total
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we successfully projected 20,404 population-based missense variants with >0.1
% allele frequency from ExAC, 35,069 disease-causing missense mutations from
HGMD and 8,569 pathogenic missense mutations from ClinVar (Supp. Data S5;
Methods). We tested whether there was any overlap between the pathogenic and
population-based missense variants on aligned positions by comparing HGMD
DM with EXAC and found a negative correlation (Pearson =-0.51, p-value < 1e-308;
Supp. Figure S1) indicating that disease-causing missense variants at aggregated
domain positions often are paired with the absence high-frequency population
missense variants and vice versa. This suggests that the information annotated to
the meta-domains may be used to enhance variant interpretation.

To further confirm that aggregation of variants to Pfam domain consensus
positions is meaningful, we perform two separate analyses. We first performed
Monte Carlo experiments to test whether missense variants re-occur at the
same position in domain homologues more often than could be expected by
chance. We find that high-frequency population missense variants in 68% of
the meta-domains re-occur at the majority of the aligned positions, and that
this is significantly different from what may be expected by chance (Bonferroni
corrected p<0.05 Welch’s t-test; Supp. Data S6 and S7; Methods). Similarly we
find that HGMD DM and ClinVar Pathogenic missense variants, in 65% and 62% of
the meta-domains respectively, re-occur at the majority of the aligned positions
(Bonferroni corrected p<0.05 Welch's t-test; Supp. Data S6 and S7). This analysis
shows that the re-occurrence of missense variants found at aligned positions over
all domain homologues follows a non-random pattern.

In our second analysis, again we perform Monte Carlo experiments and compute
for each meta-domain our NCMVS metric to quantify how many missense variants,
which re-occur at the same position, are also of identical change in amino acid
(Methods). This way we find that high-frequency population missense variants
in 21% of the meta-domains have significantly more variants of identical change
at aligned positions across homologues as compared to what may be expected
by chance. The pathogenic missense variants from HGMD DM and ClinVar
Pathogenic datasets show a similar signal, with 23% and 18% respectively, of the
meta-domains having an enriched NCMVS (Bonferroni correction p<0.05 Welch's
t-test; Supp. Data S7; Methods). This second analysis shows that the change in
amino acid of missense variants found over all domain homologues is for a large
set of domains more often identical than what may be expected by chance.
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Figure 4.Meta-domain construction in a schematic representation.

Genetic information is aggregated into a meta-domain based on domain homology. A. In this
specific example there are three human proteins (indicated by the grey bars) with four domains
that are found to have the same Pfam domain identifier and therefore belong to the same
homologous domain group (indicated by A, B, C, and D). Red vertical lines in these domains
indicate missense variants. There are other domains found in these proteins, but these are not
further used in this specific example. B. The homologous domains together with their respective
missense variants are extracted from the proteins and are aligned according to the Pfam domain.
Based on the alignment the missense variants are then aggregated into a meta-domain. Some of
these missense variants were aligned to the same position, in the meta-domain this is expressed
with a higher blue column.

The results of these two analyses find that missense variation in domains follow a
non-random pattern. Such a non-random pattern in pathogenic variants suggests
that specific positions in domains are more likely to have a pathogenic effect via
missense variants as compared to other positions. Conversely, finding a non-
random pattern for re-occurring high-frequency population missense variants
provides insight into positions that are genetically tolerant. These findings support
our hypothesis that variant information can be aggregated across homologous
domains, and that aggregation may help to interpret variants of unknown
significance.
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Investigating a meta-domain in detail

To illustrate how these meta-domains can straightforwardly be used to improve
variant interpretation we investigated one meta-domain in detail; the “EGF-like
domain” (PFO0008). This domain has 244 homologous occurrences in 60 different
human genes (Figure 5). The “EGF-like domain” has the second highest NCMVS in
the context of HGMD DM missense variants, and the 13 highest based on high-
frequency population variants (Supp. Data S7). This suggests that the majority of
variants often re-occur at aligned positions across the 244 homologues as identical
changes in amino acids. Based on what is known from EGF-like domains, any
changes to the conserved cysteines will cause loss of a stabilizing disulphide bond
that are necessary for the structure of the domain.** As expected, we find that the
highly conserved cysteines are indeed enriched for disease-causing variants across
the 244 homologues. Furthermore, all of the conserved cysteines are depleted
for population-based missense variants, with the exception of consensus position
six, confirming the importance of these residues. For consensus position six we
observe that population variation is present in only one homologue. This specific
variant in NOTCH4 (p.Cys815Gly, rs150079294) has an allele frequency 0.1632%
in EXAC. dbSNP suggests that this variant is benign based on a single study’>7¢
whereas our results further support the notion that this variant is problematic for
this domain because of almost complete absence of common variation across the
homologues. Even more interesting are the positions that are not evolutionary
conserved (>0.6 relative entropy), but nevertheless depleted of population-based
missense variation. In this “EGF-like domain” example, we find one such position
at 21. In support of our hypothesis, we find multiple disease-causing missense
mutations in different homologous domains at this position. We find that these

»Figure 5. An example of the EGF-like domain, represented as a meta-domain.

The “EGF-like domain” (PFO0008) occurring in 60 different human genes found to be significantly
enriched for identical disease-causing missense variants across 244 homologues. X-axis shows the
amino acid positions of this domain. The green bars in the top panel indicate how many missense
variants with >0.1% allele frequency from ExAC are found over the 244 homologous domains and.
The black bars indicate the number of missense variants that are of identical chance in amino
acid (i.e. having identical reference and alternate residues). The middle panel denotes the Pfam
HMM sequence logo generated via the Skylign tool*> where the height of each stack of residues
indicates the relative entropy for that position. The thin red vertical lines in the sequence logo
denote regions prone to contain deletions and the orange lines are regions prone to insertions
based on the Pfam HMM. In the bottom panel red bars indicate the number of a disease-causing
variant found across the 244 homologous domains. Black bars again indicate identical mutations.
A comparison with ClinVar was made as well, albeit the dataset is much sparser as compared to
HGMD (Supp Figure S7).
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disease-causing mutations have been previouslylinked to CADASIL (OMIM #125310,
p.Tyr337Cys, p.Tyr1021Cys, p.Tyr1069Cys in NOTCH3 (Q9UM47). CADASIL is an
adult-onset autosomal dominant hereditary stroke disorder.”” Other mutations
aligned to this consensus position are p.Tyr690Asp in JAG1 (P78604) associated
with Biliary atresia extrahepatic (OMIM %210500), a disorder in infants that is
fatal within the first two years of life when untreated,’®”® and p.Arg628Cys in CRB2
(Q51)48) associated with Nephrotic syndrome steroid resistant (OMIM #616220), a
childhood onset renal disorder .

These results illustrate how meta-domains can be straightforwardly used to
improve the interpretation of genetic variants of unknown significance. We
have made our mapping of genomic positions to meta-domain identifiers and
consensus positions available for the wider genetic community to make use of in
Supp. Data S8.

Discussion

Here we combined two distinct concepts into a novel method for variant
interpretation. Firstly, we used the observation that mutations at aligned
positions in homologous proteins commonly lead to the same or similar effects
on those proteins’ structure and function. Secondly, large datasets of population
scale exome data have made it possible to determine the degree of intolerance
to genetic variation for individual genes in order to identify potential disease
genes. We combined these two concepts by aggregating population variation
across homologous protein domain positions and thereby achieving single base
resolution for geneticintolerance. As genetic data accumulates in the coming years,
our method will become more and more accurate in predictions of intolerance at
the single base pair level (Supp. Figure S2 and S3).

To quantify genetic tolerance in genes, protein domains and domain homologues
(Figure 1) we made use of the d,/d; score rather than other well-established
tolerance scores such as pL1,>° RVIS,2 and subRVIS.° The d,/d; metric was originally
intended for detecting selective evolutionary pressure in protein-coding regions
and genomes,®-8 and has previously been used by us and others to measure
genetic tolerance and predict disease genes.'®**# Qur choice for this score was
motivated by the fact that the mentioned tolerance scores typically capture a
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more general notion of tolerance to genetic variation and are not designed to
measure tolerance for any specific genic region of interest.

Contrary to our expectations we found that 54% of disease-causing missense
variants are evolutionary variable. There are some explanations why we find
this result: Firstly, we did not take into account whether disease-causing variants
asserted their effect in a dominant or a recessive fashion. We know that mutations
in dominant disease genes are in general more conserved than mutations in
recessive genes. Secondly, we know that not all disease-causing variants have the
same severity in terms of fitness. For example, mutations causing infertility will be
much more selected against than mutations causing genetic deafness. Thirdly, a
large percentage of HGMD DM variants used to be present in recent population
databases and may therefore be incorrect.®> Although in the version we used,
this number was significantly reduced, some may still be present.®#” Finally, our
comparison does not account for unobserved (potentially lethal) variants, as many
of these variants are likely to have never been observed, nor ever will be.

In our meta-domains, we tested whether high-frequency missense variants with an
allelefrequency>0.1%inExACarerepeatedly enriched or depleted on Pfam domain
consensus positions. This strict cut-off of 0.1% may cause us to miss variants with
allele frequencies smaller than 0.1% at corresponding positions in homologues.
We choose this cut-off in order to exclude the possibility of artefacts in the EXAC
database, and for increasing the likelihood that variation is truly benign. Setting a
stricter threshold such as 0.5% decreases the number of EXAC missense variants
in meta-domains by 56%. Allowing for a less stringent cut-off will add a substantial
amount of genetic variation to our model that would improve our sensitivity, but
likely at the cost of specificity (Supp. Figure S4, Supp, Data S9). We expect there
is still much to be gained from these ‘rare’ variants found in population cohorts.
Furthermore we note that by aggregating genetic variation, the specific context
such as haplotype information or interactions with other proteins, may be lost.
An aggregation may only encapsulate general biological or molecular functions
attributed to the domain. Nonetheless, we believe these meta-domains can be
used to better interpret variants of unknown significance simply based on our pre-
calculated meta-domains (Supp. Data S5 and S8), but also by incorporating these
results in existing methods for variant effect prediction.
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Supporting Information

All supplementary information can be found online with the published article at
u
o
"

https://doi.org/10.1002/humu.23313
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Abstract

The growing availability of human genetic variation has given rise to novel
methods of measuring genetic tolerance that better interpret variants of unknown
significance. We recently developed a concept based on protein domain homology
in the human genome to improve variant interpretation. For this purpose, we
mapped population variation from the Exome Aggregation Consortium (ExAC) and
pathogenic mutations from the Human Gene Mutation Database (HGMD) onto
Pfam protein domains. The aggregation of these variation data across homologous
domains into meta-domains allowed us to generate amino acid resolution of
genetic intolerance profiles for human protein domains.

Here, we developed MetaDome, a fast and easy-to-use web server that visualizes
meta-domain information and gene-wide profiles of genetic tolerance. We updated
the underlying data of MetaDome to contain information from 56,319 human
transcripts, 71,419 protein domains, 12,164,292 genetic variants from gnomAD,
and 34,076 pathogenic mutations from ClinVar. MetaDome allows researchers
to easily investigate their variants of interest for the presence or absence of
variation at corresponding positions within homologous domains. We illustrate
the added value of MetaDome by an example that highlights how it may help in
the interpretation of variants of unknown significance. The MetaDome web server
is freely accessible at https://stuart.radboudumc.nl/metadome.
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Introduction

The continuousaccumulation of human genomicdata hasspurredthe development
of new methods to interpret genetic variants. There are many freely available web
servers and services that facilitate the use of these data by non-bioinformaticians.
For example, the ESP Exome Variant Server®®# and the Genome Aggregation
Database (gnomAD) browser># help locate variants that occur frequently in the
general population. These services are used for the interpretation of unknown
variants based on the assumption that variants occurring frequently in the general
population are unlikely to be relevant for patients with Mendelian disorders.®
There are also methods that derive information from these large human genetic
databases. For example genetic intolerance, which is commonly used to interpret
variants of unknown significance by assessing whether variants stand out because
they occur in regions that are genetically invariable in the general population.®'
Examples of such methods are RVIS® and subRVIS.? The strongest evidence for the
pathogenicity of a genomic variant comes from the presence of that variant in
any of the clinically relevant genetic variant databases such as the Human Gene
Mutation Database (HGMD)®! or the public archive of clinically relevant variants
(Clinvar).>* These databases are gradually growing in the amount of validated
pathogenic information.

Another way to provide evidence for the pathogenicity of a genomic variant is to
observe the effect of that variant in homologous proteins across different species.
Mutations at corresponding locations in homologous proteins are found to result
in similar effects on protein stability®® and can facilitate variant interpretation
between disease genes and their paralogues.®? Finding homologous proteinsis one
the key applications of BLAST.3® Transferring information between homologous
proteins is one of the oldest concepts in bioinformatics, and can be achieved by
performing a multiple sequence alignment (MSA) and locating equivalent positions
between the protein sequences. We have previously used this concept and showed
that it also holds for homologous Pfam protein domain relationships within the
human genome. We found that ~71-72% of all disease-causing missense variants
from HGMD and ClinVar occur in regions translating to a Pfam protein domain and
observed that pathogenic missense variants at equivalent domain positions are
often paired with the absence of population-based variation and vice versa.’® By
aggregating variant information over homologous protein domains, the resolution
of genetic tolerance per position is increased to the number of aligned positions.
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Similarly, the annotation of pathogenic variants found at equivalent domain
positions also assists the interpretation of variants of unknown significance. This
use of variant information from homologous protein domains was dubbed ‘meta-
domains'. We realized that this type of information could be of great benefit to the
genetics community and therefore developed ‘MetaDome'.

MetaDome is a freely available web server that uses our concept of meta-domains
to optimally use the information from population-based and pathogenic variation
datasets without the need of a bioinformatics intermediate. MetaDome is easy to
use and utilizes the latest population datasets by incorporating the gnomAD and
ClinVar datasets.

Methods

Software architecture of MetaDome

MetaDome is developed in Python v3.5.1% and makes use of the Flask framework
v0.12.4% for the web server part which communicates between the front-end, the
back-end, and the database. The software architecture (Supp. Figure S5) follows
the Domain-driven design paradigm.®® The entities in the domain part of this
software architecture are rich data representations that are based on the internal
database (Creating the mapping database) and annotations from external
resources. These entities are stored after their first creation and afterward directly
used for data retrieval to make the lookup in MetaDome as efficient as possible.
The code is open source and can be found at our GitHub repository: https://github.
com/cmbi/metadome. Detailed instructions on how to deploy the MetaDome web
server can be found there too.

To ensure MetaDome can be deployed to any environment and provide a high
degree of modularity, we have containerized the application via Docker v17.12.1.%7
We use docker-compose v1.17.1 to ensure that different containerized aspects of
the MetaDome server can work together. The following aspects are containerized
to this purpose: 1.) The Flask application, 2.) a PostgreSQL v10 database wherein
the mapping database is stored, 3.) a Celery v4.2.0 task queue management
system to facilitate the larger tasks of the MetaDome web-based user requests, 4.)
a Redis v4.0.11 for task result storage, and 5.) RabbitMQ v3.7 to mediate as a task
broker between client and workers. For a full overview of the docker-compose
architecture we refer to Supp. Figure S6.
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The visualization medium of the MetaDome web server is a fully interactive and
responsive HTML web page. This page is generated by the Flask framework and
the navigation aesthetics are made using the CSS framework Bulma v0.7.1.% The
visualizations of the various landscapes and the schematic protein are created
with JavaScript, JQuery v3.3.1, and the D3 Framework v4.13.0.%° As the visualization
by the D3 Framework is highly dependent on the user's cpu power, so are the
visualizations of MetaDome.

Datasets of population and disease-causing genetic variation

MetaDome makes use of single nucleotide variants (SNVs) from population and
clinically relevant genetic variation databases. Population variation was obtained
from the gnomAD r2.0.2 VCF file by selecting all synonymous, nonsense, and
missense variants that meet the PASS filter criteria. Variants meeting the PASS
criteria are considered to be true variants.>® The variants in the VCF file from
ClinVar release 2018 05 03 with disease-causing (Pathogenic) status are used as
the disease-causing SNVs in MetaDome.

Creating the mapping database

MetaDome stores a complete mapping between genomic, protein positions, and
all domain annotations (Supp. Figure S7) in a PostgreSQL relational database.’
This mapping is auto-generated and stored in the PostgreSQL database by the
MetaDome web server upon the first run. The genomic positions consist of each
chromosomal position in the protein-coding transcripts of the GENCODE release
19 GRCh37.p13 Basic set.®® The protein positions correspond to protein sequence
positions in the UniProtkKB/Swiss-Prot Release 2016_09 databank entries for
the human species.®* These mappings are created with Protein-Protein BLAST
v2.2.31+52 for each protein-coding translation in the GENCODE Basic set to human
canonical and isoform Swiss-Prot protein sequences. We exclude sequences that
do not start with a start codon (i.e. ATG encoding for methionine), or end with
a stop codon. We checked if the cDNA sequence of the transcripts match the
GENCODE translation via Biopython's translate function,'® if they are not identical
then these are excluded too. The global information on the transcript (e.g.
identifiers, sequence length) is registered in the database in the table ‘genes’ and,
for each Swiss-Prot entry with an identical sequence match, the global information
is stored in the table ‘proteins’. All tables are indexed by the fields that are used
in the lookups.
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Next, for each identical match between translation and Swiss-Prot sequence
a Clustalw2 v2.1%° alignment is made between these two sequences. Each
nucleotide’s genomic position is mapped to the protein position and stored in the
‘mappings’ table. Each entry in mapping represents a single nucleotide of a codon
and is linked to the corresponding entry in the ‘genes’ and ‘proteins’ table (i.e. the
corresponding GENCODE translation, transcription and Swiss-Prot sequence).

Each Swiss-Prot sequence in the database is annotated via InterProScan v5.20-
59.0% for Pfam-A v30.0 protein domains* and the results are stored in the
‘interpro_domains’ table. After the construction of the database is finished, all
meta-domain alignments can be constructed.

Composing a meta-domain

Meta-domains consist of homologous Pfam protein domain instances that are
annotated using InterproScan. Meta-domains consist of domains that have at
least two homologues within the human genome. MSAs are made using a three
step process. 1.) Retrieve all sequences for the domain instances, 2.) Retrieve the
Pfam HMM corresponding to the Pfam identifier annotated by InterproScan, and
3.) Use HMMER 3.1b2% to align the sequences from the first step. The resulting
Stockholm format MSA files can be inspected with alignment visualization software
like Jalview.'°2 In this Stockholm formatted file, all columns that correspond to the
domain consensus represent the same homologous positions.

These Stockholm files are retrieved by the MetaDome web server when a user
request meta-domain information for a position of their interest. Upon retrieval
of this Stockholm file, the mapping database is used to obtain the corresponding
genomic positions for each residue. These genomic positions are subsequently
used to retrieve corresponding gnomAD or ClinVar variation.

Computing genetic tolerance and generating a tolerance landscape

The non-synonymous over synonymous ratio, or d,/d. score, is used to quantify
genetic tolerance. This score is based on the observed (obs) missense and
synonymous variation in gnomAD (missense,, . and synonymous,, ). This score is
corrected for the sequence composition by taking into account the background
(bg) of possible missense and synonymous variants based on the codon table
missense,, and synonymous, ):
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missenseobs/missensepg

dN/dS =

Synonymousobs/Synonymouspg

The tolerance landscape computes this ratio as a sliding window of size 21 (i.e.
ten residues before and ten after the residue of interest) over the entirety of the
gene's protein, similar to the Missense Tolerance Ratio (MTR) presented by.'® The
edges (e.g. start and end) are therefore a bit noisy as they are not the result of
averaging over a full length window.

Results

Accessibility

The MetaDome web server is freely accessible at https://stuart.radboudumc.nl/
metadome. MetaDome features a user-friendly web interface and features a fully
interactive tour to get familiar with all parts of the analysis and visualizations.

All source code and detailed configuration instructions are available in our GitHub
repository: https://github.com/cmbi/metadome.

The underlying database: a mapping between genes and proteins

The MetaDome web server queries genomic datasets in order to annotate
positions in a protein or a protein domain. Therefore, the server needs access to
genomic positional information as well as protein sequence and protein domain
information. The database maps GENCODE gene translations to entries in the
UniProtKB/Swiss-Prot databank in a per-position manner and corresponding
protein domains or genomic variation. With respect to our criteria to map gene
translations to proteins (Methods; creating the mapping database), 42,116 of
the 56,319 full-length protein-coding GENCODE Basic transcripts for 19,728 human
genes are linked to 33,492 of the 42,130 Swiss-Prot human canonical or isoform
sequences. Of the total 591,556 canonical and isoform sequences present in
Swiss-Prot, 42,130 result from the Human species. The resulting mappings contain
32,595,355 unique genomic positions that are linked to 19,226,961 residues in
Swiss-Prot protein sequences.

71,419 Pfam domains are linked to 30,406 of the Swiss-Prot sequences in our
database. Of these Pfam domain instances, 5,948 are from a unique Pfam domain
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family and 3,334 of these families have two or more homologues and are therefore
suitable for meta-domain construction. Thus, by incorporating every protein-
coding transcript, instead of only the longest ones, we increase the previously
2,750% meta-domains to 3,334. These meta-domains, on average, consist of
16 human protein domain homologues with a protein sequence length of 158
residues. Table 1 summarizes the counting statistics for sequences, domains, etc.

Database What # of entries
GENCODE Protein-coding genes 20,345
MetaDome Protein-coding genes 19,728
GENCODE Protein-coding transcripts 57,005
MetaDome Protein-coding transcripts 56,319
Swiss-Prot Canonical and isoform protein sequences 591,556
Swiss-Prot Human canonical and isoform protein sequences 42,130
MetaDome Gene translations identically mapped to a canonical 42,116

or isoform protein sequence
MetaDome Canonical and isoform protein sequences 33,492
MetaDome Pfam protein domain regions 71,419
MetaDome Unique Pfam protein domain families 5,948
MetaDome Unique Pfam protein domain families with two or 3,334

more within-human occurrences
MetaDome Chromosome to protein position mappings 70,261,143
MetaDome Unique chromosome positions 32,595,355
MetaDome Unique residues (as part of a protein) 19,226,961
MetaDome Unique protein sequences with at least one Pfam 30,406

domain annotated

Table 1. Statistics on the number of entries present in GENCODE, Swiss-Prot, and our mapping
database.

How to use the MetaDome web server

At the welcome page users are offered the option to start an interactive tour or
start with the analysis. The navigation bar at the top is available throughout all
web pages in MetaDome and allow for further navigation to the ‘About’, ‘Method’,
‘Contact’ page (Supp. Figure S1). The user can fill in a gene symbol in the ‘gene
of interest’ field and is aided by an auto-completion to help you find your gene
of interest more easily (Supp. Figure S2). Clicking the ‘Get transcripts’ fills all
GENCODE transcripts for that gene in the dropdown box. Only the transcripts that
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are mapped to a Swiss-Prot protein can be used in the analysis, the others are
displayed in grey (Supp. Figure S3).

Clicking the ‘Start Analysis’ button starts an extensive query to the back-end of the
web server for the selected transcript. Firstly, all the mappings are retrieved for
the transcript of interest. Secondly, the entire transcript is annotated with ClinVar
and gnomAD single nucleotide variants (SNVs) and Pfam domains. Thirdly, if there
are any Pfam domains suitable for meta-domain relations then all mappings for
those regions are gathered and annotated with ClinVar and gnomAD variation
(methods; Composing a meta-domain).

The web-page provided to the user as a result of the ‘Analyse Protein’ can best be
explained using an example. Therefore, we have generated this result for gene
CDK13 for transcript ‘ENST00000181839.4' (Figure 1). The result page features four
main components that we will describe from top to bottom. Located at the top is
the graph control field. Directly below the graph control is the landscape view of
the protein. Below the landscape view, a schematic and interactive representation
of the protein and an additional representation of the protein which controls
the zooming option. Lastly, at the bottom of the page there is the list of selected
positions. All of these components are interactive and the various functionalities
are described in Table 2.
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CDK13 Get transcripts
1 .
ENST00000181839.4 / NM_003718.4, NM_031267.3 (1512aa) Rl Analyse Protein

Graph control
Protein of CDK13 (GENCODE: ENST00000181839.4, RefSeq: NM_003718.4, NM_031267.3, UniProt: Q14004)
2 A ® Show Meta-domain landscape © Show Protein’s Tolerance Landscape

Display ClinVar variants: & in this protein & in homologue protein domains

— !IIIJLIIHIIMI[IIHIIL

4. Protein
5. i o —"

e ey

Selected positions

Click on one of the selected positions in the table to view more information

Position Residue Protein domain ClinVar variants at position Related variants
gnomAD* ClinVar*
714 Gly PF00069 2 141 4
717 Gly PF00069 1 138 1
737 Arg PF00069 1 185 0
751 Arg PF00069 1 223 1
842 Asn PF00069 1 151 3

Figure 1. MetaDome web server result for the gene CDK13

The result provided by the MetaDome web server for the analysis of gene CDK13 with transcript
ENST00000181839.4, as provided in 1.). In 2.), there is additional information that the translation
of this transcript corresponds to Swiss-Prot protein Q14004. Here also various alternative
visualizations can be selected. The visualization starts by default in the ‘meta-domain landscape’,
a mode selectable in the graph control in 2.). The landscapes are visualized in 3.), and in the
meta-domain landscape the domain regions are annotated with missense variation counts found
in homologous domains as bar plots. The schematic protein representation, located at 4.), is
per-position selectable, and the domains are presented as purple blocks. Selected positions are
highlighted in green. The ‘Zoom-in’section at 5.) features a selectable greyed-out copy of schematic
protein representation that can zoom-in on any part of the protein. Any selected positions are
in the list of selected positions in 6.). Here more information can be obtained by clicking on one
of these positions. A detailed description of the functionality of each component is described in
Table 2.
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Component Functionality
Gene and transcript input  + Input of gene of interest
field * Retrieving transcripts for gene of interest
(Figure 1.1) * Selecting a transcript
« Starting the analysis for selected transcript
Graph control field * Toggling between different landscape representations
(Figure 1.2) * Reset the zoom on the landscape

* Reset the web page

* Toggle ClinVar variants to be displayed in the schematic
protein

» Download the visual representation

Landscape view * Displays the meta-domain landscape

(Figure 1.3) + Displays the tolerance landscape

Schematic protein + Displays a schematic representation of the gene's protein
(Figure 1.4) with Pfam protein domains annotated

* Hovering over a position displays positional information

+ Clicking on a position highlights the position and adds the
position to the list of ‘Selected Positions’

« Controls the zooming of particular parts of the protein

(Figure 1.5)
Selected Positions + Displays any positions selected in the schematic protein
(Figure 1.6) « Displays per selected position: if that position is part of

a Pfam protein domain, any known gnomAD or ClinVar
variants present at this position, and any variants that are
homologously related to this position

* Provides more detailed information as a pop-up when
clicking on one of the positions in this list.

Table 2. Descriptions of the various functionalities on the MetaDome result page.

Another way to use population-based variation in the context of the entire
protein is via the tolerance landscape representation in MetaDome that can be
selected in the graph control component (Figure 1.2). The tolerance landscape
depicts a missense over synonymous ratio (also known as K/K_or d,/d.) over
a sliding window of 21 residues ovr the entirety of the protein of interest (e.g.
calculated for ten residues left and right of each residue) based on the gnomAD
dataset (methods; Computing genetic tolerance and generating a tolerance
landscape; Figure 2A). Previously, the d,/d. metric has been used by others and
us to measure genetic tolerance and predict disease genes,**#1% and it is suitable

for measuring tolerance in regions within genes.™

An example of using the MetaDome web server for variant
interpretation

The MetaDome analysis result for CDK73 (Figure 1) is the longest protein coding
transcript for CDK73 with a protein sequence length of 1,512 amino acids. In the
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resulting schematic protein representation we can observe the Pkinase Pfam
protein domain (PFO0069) between positions 707 and 998 as the only protein
domaininthis gene (Figure 2B). The Pkinase domain is highly prevalent throughout
the human genome with as many as 779 homologous occurrences in human
proteins, of which 353 are unique genomic regions. It is the 8th most occurring
domain in our mapping database. The meta-domain landscape is the default view
mode and shows any missense variation found in homologous domain occurrences
throughout the human genome. Population-based (gnomAD) missense variation
is displayed in green and pathogenic (ClinVar) missense variation is annotated in
red bars, with the height of the bars depicting the number of variants found at
each position (Figure 2B).

At the ‘Display ClinVar variants’ the user is provided two options; to highlight all
known pathogenic information known for the current protein and/or highlight any
ClinVar variants that are present at homologous positions (Figure 2A). All Clinvar
variants highlighted are displayed in red. In total six known disease-causing SNVs
are present in the CDK13 gene itself according to ClinVar, and these all fall within
the Pkinase protein domain. All of these are missense variants. If we add variants

» Figure 2. Examples of a MetaDome analysis for the gene CDK13

A.) The tolerance landscape depicts a missense over synonymous ratio calculated as a sliding
window over the entirety of the protein (methods; Computing genetic tolerance and generating
a tolerance landscape). The missense and synonymous variation are annotated from the
gnomAD dataset and the landscape provides some indication of regions that are intolerant to
missense variation. In this CDK13 tolerance landscape the Pkinase Pfam protein domain (PFO0069)
in purple can be clearly seen as intolerant if compared to other parts in this protein. The red bars
in the schematic protein representation correspond to pathogenic ClinVar variants found in this
gene and in homologous protein domains. All of these variants are contained in the intolerant
region of the landscape.

B.) A zoom-in on the meta-domain landscape for CDK13. The Pkinase Pfam protein domain
(PF00069) is located between protein positions 707 and 998 and annotated as a purple box in the
schematic protein representation. The meta-domain landscape displays a deep annotation of the
protein domain: the green (gnomAD) and red (ClinVar) bars correspond to the number of missense
variants found at aligned homologous positions. Unaligned positions are annotated as black bars.
All of this information is displayed upon hovering over these various elements.

C.) The positional information provides a detailed overview of a position from the ‘Selected
Positions’ list, especially if that position is aligned to domain homologues. Here, for position
p.Gly714 we can observe in 1.) the positional details for this specific protein position. In 2.) is any
known pathogenic information for this position. We can observe here that for this position there
are two known pathogenic missense variants. In 3.) meta-domain information is displayed and we
can observe that p.Gly714 is aligned to consensus position 10 in the Pkinase Pfam protein domain
and related to 329 other codons. This consensus position has an alignment coverage of 93.5% for
the meta-domain MSA. There are also four pathogenic variants found in ClinVar on corresponding
homologous positions as can be seen in 4.) and in 5.) there is an overview of all corresponding
variants found in gnomAD.
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Tolerant

Intolerant
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Homologous pathogenic missense count: 7

Position: p.707 ¢.2119-2121 Residue is not aligned to homologues
Codon: ATC

Residue: lle

Tolerance score (dn/ds): 0.

Click to select

Positional information (p.714)

Protein details

Protein of CDK13 (GENCODE: ENST00000181839.4, RefSeq: NM_003718.4,
NM_031267.3, UniProt: Q14004)

Location details

Chr: chr7, strand: +

Gene: 9.40039057-40039059
Protein: p.714 Gly

cDNA: ¢.2140-2142 GGT

Tolerance score (dn/ds): 0.29 (RIS

Position is part of protein domain(s): PF00069

Known pathogenic ClinVar SNVs at position

Gene  Position Variant Residue change Type ClinVar ID.
CDK13 chi7:40039057 G>C  Gly>Arg missense 37

738

CDK13 chr7:40039058 G>A  Gly>Asp missense 449224

Meta-domain information for domain PF00069:

Aligned to consensus position 10, related to 329 other codons throughout the
genome (with a 93.5% alignment coverage).

Pathogenic ClinVar SNVs at homologous positions:

Gene  Position Variant Residue change Type ClinVar ID.
1AK  chr6:10830845  G>A  Gly>Ser missense 29783
PRKCG chr19:54401351 G>A  Gly>Ser missense 42129
T ch12120295424 G>T  Gly>Val missense 254134
PRKD1 chrl4:30095714 G>A  Gly>Arg missense 740

Variants in gnomAD SNVs at homologous positions:

Gene Position Variant Residue Type gnomAD
change Allele
Frequency
SRPK3 chrX:153047 C>A Gly>Gly synonymous 0.000124
MKNK1 chr1:47046 C>A  Gly>Val missense  0.000008
PNCK chrX:152938151 C>G  Gly>Arg missense  0.000006

MELK chr9:36583624  G>T Gly>Val  missense 0.000029
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found in homologous domains there are 64 positions with one or more reported
pathogenic variants (Supp. Data S1). Four of these positions overlap with the
positions on which ClinVar variants were found in the gene itself and on position
p.883 (Supp. Figure S4) we can observe a peak of eight missense variants
annotated from other protein domains.

MetaDome helps to look in more detail to a position of interest. If we do this for
protein position 714 (Figure 2C) in CDK13 we find that it corresponds to consensus
position 10 in the Pkinase domain (PFO0069). At this position in CDK13 there are
two variants reported in ClinVar: p.Gly714Arg (ClinVar ID: 375738) submitted by,'%
and p.Gly714Asp (ClinVar ID: 449224) submitted by GeneDX. The first is reported
as a de novo variant and is associated to Congenital Heart Defects, Dysmorphic
Facial Features, and Intellectual Developmental Disorder. For the second there
is no associated phenotype provided. As MetaDome annotates variants reported
at homologous positions, we can find even more information for this particular
position. At the homologues aligned to this position we find a variant of identical
change in PRKDT: p.Gly600Arg (ClinVar ID: 375740) reported as pathogenic and
de novo in the same study.'® It is also associated to Congenital Heart Defects
as well as associated to Ectodermal Dysplasia. There are three more reported
pathogenic variants aligned to this position: MAK:p.Gly13Ser (ClinVar ID: 29783)
associated to Retinitis Pigmentosa 62,'% PRKCG:p.Gly360Ser (ClinVar ID: 42129)
associated to Spinocerebellar Ataxia Type14,'%” and CIT:p.Gly106Val (ClinVar ID:
254134) associated to Microcephaly 17, primary, autosomal recessive.'® These
homologously related pathogenic variants and the severity of the associated
phenotypes contributes to the evidence that this particular residue may be
important at this position. Further evidence can be found from the fact that in
human homologue domains this residue is extremely conserved. There are 330
unique genomic regions encoding for a codon aligned to this position (Supp. Data
S2). Only in the gene PIK3R4 (ENST00000356763.3) does this codon encode for
another residue than Glycine, namely a Threonine at position p.Thr35.

In the same way that we explored pathogenic ClinVar variation we can also
explore the variation reported in gnomAD. In CDK13 at protein position 714 there
is no reported variant in gnomAD, but there are homologously related variations.
There are 65 missense variants with average allele frequency of 1.24E-05 and
76 synonymous with average allele frequency 8.71E-03 and there is no reported
nonsense variation (Supp. Data S1).
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When we inspect the tolerance landscape for CDK13 (Figure 2A) we can see that
all of the ClinVar variants (either annotated in CDK13 or related via homologues)
fall within the Pkinase Pfam protein domain (PFO0069). In addition, the protein
domain can clearly be seen as more intolerant to missense variation as compared
to other parts of this protein, thereby supporting the ClinVar variants likely
pathogenic role.

Conclusion

The MetaDome web server combines resources and information from different
fields of expertise (e.g. genomics and proteomics) in order to increase the power
in analysing population and pathogenic variation by transposing this variation
to homologous protein domains. Such a transfer of information is achieved by
a per-position mapping between the GENCODE and Swiss-Prot databases. 79.4%
of the Human Swiss-Prot protein sequences are of identical match to one or
more of 42,116 GENCODE transcripts. This means that 25.7% of the GENCODE
transcriptions differ in mRNA but translate to the same Swiss-Prot protein
sequence. GENCODE previously reported that this is due to alternative splicing, of
which a substantial proportion only affect untranslated regions (UTRs) and thus
have no impact on the protein-coding part of the gene.'%

MetaDome is especially informative if a variant of interest falls within a protein
domain that has homologues. This is highly likely as 43.6% of the positions in
the MetaDome mapping database are part of a homologous protein domain.
Pathogenic missense variation is also highly likely to fall within a protein domain
as we previously observed for 71% of HGMD and 72% of ClinVar pathogenic
missense variants.” By aggregating variation over protein domain homologues via
MetaDome, the resolution of genetic tolerance at a single amino-acid is increased.
Furthermore, we can obtain variation that could disrupt the functionality of a
protein domain, as annotated throughout the entire human genome, which may
potentially be disease-causing. It should be noted, that by aggregating genetic
variation in this way the specific context such as haplotype information or
interactions with other proteins may be lost. Aggregation via meta-domains only
encapsulates general biological or molecular functions attributed to the domain.
Nonetheless, we believe MetaDome can be used to better interpret variants of
unknown significance through the use of meta-domains and tolerance landscapes
as we have shown in our example.
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As more genetic data accumulates in the years to come, MetaDome will become
more and more accurate in predictions of intolerance at the base-pair level and the
meta-domain landscapes will become even more populated with variation found
in homologue protein domains. We can imagine many other ways of integrating
this type of information to be helpful for variant interpretation. Future directions
for the MetaDome web server could lead to machine learning empowered variant
effect prediction, or visualization of the meta-domain information in a protein 3D
structure.
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https://doi.org/10.1002/humu.23798

75






Chapter 4

Spatial clustering of de novo missense
mutations identifies candidate neuro-
developmental disorder-associated genes

Stefan H. Lelieveld', Laurens van de Wiel', Hanka Venselaar, Rolph Pfundt,
Gerrit Vriend, Joris A. Veltman, Han G. Brunner, Lisenka E.L.M. Vissers?,
and Christian Gilissen?

1, 2: These authors contributed equally

Published in The American Journal of Human Genetics
7 September 2017; 101(3):478-84



Chapter 4

Abstract

Haploinsufficiency (HI) is the best characterized mechanism through which
dominant mutations exert their effect and cause disease. Non-haploinsufficiency
(NHI) mechanisms, such as gain-of-function and dominant-negative mechanismes,
are often characterized by the spatial clustering of mutations, thereby
affecting only particular regions or base pairs of a gene. Variants leading to
haploinsufficency might occasionally cluster as well, for example in critical
domains, but such clustering is on the whole less pronounced with mutations
often spread throughout the gene. Here we exploit this property and develop a
method to specifically identify genes with significant spatial clustering patterns of
de novo mutations in large cohorts. We apply our method to a dataset of 4,061 de
novo missense mutations from published exome studies of trios with intellectual
disability and developmental disorders (ID/DD) and successfully identify 15 genes
with clustering mutations, including 12 genes for which mutations are known
to cause neurodevelopmental disorders. For 11 out of these 12, NHI mutation
mechanisms have been reported. Additionally, we identify three candidate ID/DD-
associated genes of which two have an established role in neuronal processes. We
further observe a higher intolerance to normal genetic variation of the identified
genes compared to known genes for which mutations lead to HI. Finally, 3D
modeling of these mutations on their protein structures shows that 81% of the
observed mutations are unlikely to affect the overall structural integrity and that
they therefore most likely act through a mechanism other than HI.
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De novo mutations affecting protein-coding genes are a major cause of intellectual
disability (ID) and other developmental disorders (DDs).>*'% Several whole exome
sequencing (WES) studies have identified ID syndromes molecularly characterized
by very specific spatial clustering of de novo missense mutations."®"'3 Similarly,
large-scale WES studies of individuals affected by ID/DD have recently leveraged this
phenomenon as supporting evidence of the involvement of a gene in disease.”®'4
This spatial clustering of de novo mutations (DNMs) is typical for missense
mutations in genes without clear, or limited numbers of, truncating mutations
subsequently degraded by nonsense mediated mRNA decay, suggesting that these
clustered mutations act through a different mechanism than haploinsufficiency
(H1).""> Alternative pathophysiological mechanisms that might underlie (de novo)
mutation clustering are gain-of-function or dominant-negative effects, resulting
in the alteration or impairment of specific protein function.'®'” We note that
while spatial clustering is commonly taken to indicate a mechanism different from
loss-of-function,''® this is not an absolute rule, and a loss-of-function mechanism
cannot be excluded without functional evidence.’® Here, we developed a method
to identify genes with spatially clustered DNMs and applied this to DNMs identified
in a large cohort of individuals with ID/DD."?°

We downloaded all DNMs occurring in individuals with ID/DD from denovo-
db version 1.3'2 identified through WES and whole genome sequencing which
were then re-annotated with our in-house variant annotation pipeline. The de
novo mutations included in the analysis were previously validated by a second
independent method or showed a high validation rate for a subset of de novo
mutations. In addition, we added 1,183 de novo variants identified in the exomes
of an in-house ID cohort that was previously published.”® To further reduce the
risk of including sequencing artifacts and/or genotyping errors, we excluded all de
novo variants that were present more than once in the EXAC dataset (Table S1).*°
These efforts resulted in 6,495 protein coding DNMs, including 4,061 missense
mutations, in 5,302 individuals with ID/DD (Table S2).

We set out to determine for any gene whether the observed de novo missense
mutations cluster more than expected compared to random permutations.
Hereto, we selected for each the longest representative transcript (i.e. part of
the GENCODE basic set)®® and calculated the geometric mean distance 6g over
all missense DNMs on cDNA. é‘g was calculated by taking the mean distance
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normalized for transcript length / over all (M) combinations of x, and x, of the
missense DNMs (Equation 1.), where x represents the position for mutation i and
j respectively. Statistical significance was determined by performing 1.00E+08 (or
N) permutations and calculating for each permuted geometric mean distance (59)
how many times this resulted in the same or smaller geometric mean distance as
observed (Equation 2.) Permutation p-values were corrected for multiple testing
via Bonferroni procedure based on the 19,280 genes of the Agilent SureSelect v5
exome enrichment kit.

1
M
1—[|xl—x]|+1 )
I+1 '
l<]
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We first validated our method on a dataset of DNMs identified in 2,448 unaffected
siblings and healthy control studies'?2¢ (Table S3). In this cohort, we failed to
identify genes for which clustering of de novo missense mutations reached
statistical significance (Table S4). However, application of our method to the
dataset of 4,061 DNMs, containing 583 genes with more than one de novo missense
mutation, revealed 15 genes with significant clustering’®''4127-12% (Table 1, Figure
1, Figures S1-S15). In these genes, a total of 107 de novo missense mutations
contributed to mutation clustering, ranging from three to 20 mutations per gene
with an average distance ranging from 0 to 354 bp. To exclude a correlation
between the extent of clustering and the total number of de novo missense
mutations analyzed, we applied our method to a cohort of 6,154 de novo missense
variants presentin Denovo-db excluding the five studies incorporated in the ID/DD
cohort, and found no such correlation (Figure S16). To examine whether this set
of 15 genes is relevant in the context of ID/DD, we compared these genes to a list
of 1,541 genes for which mutations are known to cause ID/DD (Table S5). This list
of genes was a compilation of two manually curated lists of disease related genes
including “confirmed” unique genes from DDG2P (n=1,098; see Web Resources)
and 1,034 genes offered for diagnostic testing in individuals with ID/DD by our
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in-house diagnostic facility (see Web Resources). Among the 15 identified genes
with mutation clustering, we find 12 genes for which mutations have previously
been implicated in ID/DD, constituting a significant enrichment (p=3.09e-03;
Fisher's exact test; Tables S6 and S7), and confirming that our method is valid for
its purpose.. The inclusion of exome data of two large DDD-studies in both the
DDG2P gene list and the ID/DD cohort of this study could introduce a potential
bias'®4 To exclude such bias we repeated this analysis while excluding the DDD
specific genes identified in the two exome studies yielding a significant enrichment
(p=3.68E-02; Table S7A-C).

A SMAD4
T T T T 1
0 500 1000 1500 1659
c¢DNA position
Protein kinase domain
T T T T T 1
0 1000 2000 3000 4000 4539
c¢DNA position
T PACS-1 cytosolic sorting protein
T T T T T T 1
0 500 1000 1500 2000 2500 2715
c¢DNA position

Figure 1. Examples of Identified Genes with Clustering Mutations

Protein domains are annotated based on Pfam HMM search.*' cDNA locations of de novo missense
mutations are depicted by blue pins. Genes shown here are as follows: SMAD4 (A), CDK13 (B),
PACS2 (C). Figures visualizing the clustering of de novo missense mutations in the other 12 genes
are provided in Figures S1-515.
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Table 1. List of identified genes with clustering de novo missense mutations. Genes previously
known to be involved in neurodevelopmental disorders are indicated in italics. P-values are based
on a permutation test (N=1.00E+08). Adj. p-values are corrected by Bonferroni correction. The
three identified genes with that have not yet been implicated in ID/DD are indicated by an “.

Gene name Transcript ID #denovo Median P-value Adj.
missense distance p-value
(bp)

ACTL6B? ENST00000160382 3 0 5.70E-07 1.10E-02
ALG13 ENST00000394780 3 0 1.50E-07 2.89E-03
CDK13 ENST00000181839 12 273 <1.00E-08  <1.93E-04

COL4A3BP ENST00000380494 6 18 2.60E-07 5.01E-03

GABBR2? ENST00000259455 3 0 9.00E-08 1.74E-03

GRIN2B ENST00000609686 1 354 1.57E-06 3.03E-02
KCNH1 ENST00000271751 7 65 1.00E-07 1.93E-03
KCNQ2 ENST00000354587 20 301 5.00E-08 9.64E-04

KIF5C ENST00000435030 3 0 1.40E-07 2.70E-03
PACS1 ENST00000320580 9 0 <1.00E-08  <1.93E-04
PACS22 ENST00000458164 3 0 1.50E-07 2.89E-03
PCGF2 ENST00000360797 3 0 1.11E-06 2.14E-02

PPP2R1A ENST00000322088 4 5 4.60E-07 8.87E-03

PPP2R5D ENST00000485511 16 10 <1.00E-08  <1.93E-04
SMAD4 ENST00000398417 4 6 1.60E-07 3.08E-03

We also identified three genes with clustered de novo missense mutations that
have notyet beenimplicatedin ID/DD:ACTL6B (MIM:612458), GABBR2 (MIM:607340)
and PACS2 (MIM:610423). None of these genes would have been identified based
on enrichment for de novo mutations in this cohort (Table S8). Further systematic
evaluation of gene function supports a role in (neuro)development for two of
these genes (Table 2 and Table S9). ACTL6B, encoding Actin-like 6B (also known
as BAF53B), is a pivotal co-factor for the SWI/SNF neuron-specific chromatin
remodeling complex nBAF, which is required for neural development and
dendritic outgrowth.’™%'3! Also, GABBR2, which is a component of the G-protein-
coupled GABA receptor, plays a critical role in the fine-tuning of inhibitory synaptic
transmission,’3>34 and other members of the GABA receptor family have already
been conclusively linked to neurodevelopmental disorders.'3'3¢ GABBR2 was very
recently also reported by others to show significant de novo mutation clustering
in a neurodevelopmental cohort.’®
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Table 2. Gene function for candidate genes with clustered mutations. First column indicates
the gene name, second column a summary of the known gene functions; third column indicates
whether the gene has physical interactions with other proteins. (See Table S9 for extended
information).

Summary of gene function Interactions

ACTL6B Belongs to the neuron-specific chroma-  Complex formation with ACTB,
tin remodeling complex (nBAF complex) ARID1A, SMARCA2, SMARCA4,
and is required for postmitotic neural SMARCE1, SMARCC1, SMARCC2,
development and dendritic outgrowth. ~ SMARCD2, SMARCB1

GABBR2  Postsynaptic GABAB Receptor Activity Heterodimerization is required
Regulates Excitatory Neuronal Architec-  for the formation of a functional
ture and Spatial Memory. GABA-B receptor.

PACS2 Multifunctional sorting protein, contro- ~ N/A
ling endoplasmic reticulum-mitochond-
ria communication and Bid-mediated
apoptosis.

Our method might potentially identify clustering based on identical mutations
in multiple individuals only as a result of issues in the underlying cohort. It
could for instance be that the same individual was included in multiple studies
and therefore occurs twice in the cohort. For 99 out of 107 de novo missense
mutations (92.5%) occurring in the 15 genes with clustering mutations we could
decisively conclude that they occurred as unique events in separate individuals
based on a combination of the gender of the affected individual and the presence
of additional de novo mutations (Table S10). Nevertheless, it might be possible
that siblings of affected individuals were included who share a DNM due to
parental gonadal mosaicism.”™” Alternatively, DNMs might occur multiple times in
disease cohorts as a consequence of a locally increased mutation rate. Examples
of the latter might for instance incur a selective growth advantage (i.e. selfish
mutations'®) and thereby result in a pattern of mutational clustering such as
known for FGFR2 (MIM: 176943) mutations in Apert syndrome (MIM: 101200).'38
However, biological relevance for the mutations in the identified genes in the
context of ID/DD is suggested by the fact that in our control cohort genes with
significant clusters were absent, and that for the majority of our identified genes
experimental evidence in literature supports a NHI mutational mechanism (Table
S11).

We hypothesized that the clustering de novo missense mutations of the 15 genes
might exert their effects through mechanisms other than haploinsufficiency. To
validate this hypothesis, we compiled a set of 116 genes known for mutations
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that exert disease through non-haploinsufficient (NHI) mechanisms. Hereto,
we selected for genes that have a “confirmed” status in the DDG2P list, or are
present on both the Radboudumc ID/DD diagnostic testing and DDG2P lists
(irrespective of the DDG2P status). Furthermore, genes were selected to be (i)
dominant (mono-allelic), with the pathophysiological mechanism being either
“activating”, “all missense/in frame” and/or “dominant negative” (Table S12). In
addition, we generated a set of 183 haploinsufficient genes for which mutations
are associated with ID/DD from the DDG2P gene list by selecting “loss-of-function”
as the “mutation consequence” and “mono-allelic” for the “allelic requirement” in

the DDG2P gene list (Table S13).

Interestingly, for eight of the 12 genes for which mutations are known to cause ID/
DD and for which we identified mutation clustering, the disease mechanism on
the constructed gene list was reported to be NHI. For these eight genes, it is either
gain-of-function or dominant negative, thereby showing statistical enrichment for
NHI mechanisms (p=2.66E-03, Fisher's exact test; Table S14 and S15). For two of
the three remaining genes (GRIN2B [MIM:138252] and SMAD4 [MIM: 600993]) both
HIl and NHI consequences have been reported,* %2 suggesting that for mutations
in these genes more complex genotype-phenotype relations might exist, where Hl
and NHI mechanisms cause clinically distinct ID/DD-related disorders. For KCNQ2
(MIM: 602235), the reported mutational mechanism is HI although a literature
search also revealed cases with dominant-negative effects.'* We also investigated
the extent of the evidence for NHI mechanisms and found that extensive functional
work of mutations supporting NHI mechanisms has been previously published for
eight of the 12 known genes (Table S11).

Further we hypothesized that NHI genes should be depleted for truncating
mutations in individuals with ID/DD, i.e. mutations resulting in premature
translation termination, whereby the mRNA is targeted for nonsense mediated
decay. In our initial analyses focusing on de novo missense mutations only, we
excluded truncating mutations from our dataset. Retrospectively, we searched
for truncating DNMs in the 15 identified genes with clustering de novo missense
mutations. We found only three predicted truncating mutations in two of 15 genes,
which is significantly less than expected based on the total number of DNMs found
in the total cohort for all HI genes (p<1.00e-05; Permutation test).
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We have previously hypothesized that genes with mutations acting through
NHI mechanisms might be more intolerant to normal variation than genes
with mutations acting though a HI mechanism for ID/DD.” To test for tolerance
to variation, existing scores like pLI®® are not useful as these capture tolerance
to mRNA truncating variation rather than tolerance to variation in general.
Therefore, we measured tolerance to variation as the ratio of missense over
synonymous variation ‘d,/d.’, which has been used by us and others previously for
predicting disease genes.’®*# We downloaded all PASS-filtered single nucleotide
variants (SNVs) from ExAC (n=9,035,134) and constructed a ‘d,/d, measure by
counting the unique missense SNVs missense,, and the unique synonymous

SNVs synonymous_, , while correcting for sequence composition using the total

obs’

possible unique missense and synonymous SNVs (missense,, and synonymous,,
respectively)(Table S16):

dN/dS =

missenseobs/missensepg

SYynonymousobs/Synonymouspg

Based on calculations of these scores for the sets of 116 NHI, and 183 HI genes,
we indeed find that genes with mutations acting through a NHI mechanism are
significantly more intolerant to missense variation than genes with mutations
acting though a HI mechanism (p=2.24e-03; permutation test, Figure 2). In line with
our hypothesis, also our set of 15 genes with clustered DNMs was significantly less
tolerant to missense variation compared to the set of 183 genes with mutations
acting through a HI mechanism (p=8.45e-03; permutation test, Figure 2).
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Figure 2. Intolerance to Missense Variation

Violin plots show the distribution of the gene-based dN/dS (y axis) per gene set (x axis). The median
dN/dS is indicated by a red horizontal line. The NHI genes are more intolerant to missense variation
than HI genes (HI genes median: 0.460; NHI genes median: 0.428; p = 2.24e-03). In addition, the
identified genes with clustering mutations are more intolerant to missense variation than Hl genes
(genes with clustering mutations median: 0.352; p = 8.45e-03).

»Figure 3. Examples of Modeling of Missense Mutations on 3D Protein Structures

Wild-type residues are marked in blue; de novo mutations are indicated as red globes or lines
(Tables S17).

A. 3D structure of GNAT, acting through Hl, showing that the modeled missense mutations are
buried and likely to disrupt protein folding.

B. Structure of PPP2R5D, acting through NHI, where the modeled missense mutations affect
mostly surface residues and are expected to have no or only local structural effects.

C. Zoom-in of known missense variants p.Arg496Cys and p.lle500Val in SMAD4 known to act
through a gain-of-function mechanism. These variants are located on the surface of the monomer
and in contact with another SMAD4 monomer.™*'

D. Zoom-in of the missense variant p.Gly343Arg in ACTL6B which is located at the surface. The
side-chain points toward the solvent, therefore the larger Arginine will fit.

E. Zoom-in of the missense variant p.Pro65Leu in PCGF2 close to the interaction site with other
molecules.
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Modeling of missense mutations in a 3D protein structure is helpful to gain
more insight into the possible structural and functional effects.* Conceptually,
mutations in the core of the protein structure are more likely to prevent proper
folding than mutations on the protein surface.’ The impact of a surface change
however depends entirely on the spatial context and is therefore less likely to
result in misfolding and subsequent protein degradation.'® Consequently, de
novo disease-causing missense mutations preventing proper folding cause protein
degradation, and thus indirectly lead to HI, similar to protein truncating mutations
insuch genes.Totestthe hypothesis that our clustered de novo missense mutations
do not generally result in HI due to protein misfolding we modeled mutations onto
the 3D protein structure using YASARA & WHAT IF Twinset.'#'#” A (partial) protein
3D structure was available or could be created via homology modeling for 10 of
the 15 identified genes. We assessed 48 missense mutations on the 3D structure
(i.e. buried, at the surface, or semi-buried) and whether the mutation was likely to
affect protein folding (no effect, local effect, or large effect; Figure 3, Table S17).
To compare the results of 3D modeling of clustered mutations, we also modeled
75 de novo disease-causing missense mutations in 25 genes with mutations acting
though HI (Table S13) for which a structure was available (Table S17). For the
HI genes, 42% of missense mutations were buried and 34% of mutations were
located at the protein surface. In the 10 genes for which a mutational NHI effect
is proposed, only 11% of mutations was buried whereas 61% was located at the
protein surface (p=1.26E-03, chi-square test; Table S17). Even more strikingly, only
19% of the clustering de novo missense mutations were likely to result in a large
structural change that would affect protein function whereas this was observed
for 63% of de novo missense mutations in HI genes (p = 8.43E-06, chi-square test).
These results support the notion that the majority of clustered de novo disease-
causing missense mutations do not result in haploinsufficiency at the protein
structure level, but enact their effect through other mechanisms. Possibly this
could be through the functional impairment of protein-protein interactions, as we
noted that two of the three candidate ID/DD genes require complex formation or
joining of protein subunits (e.g. multimerisation) to be functional (Table 2).

In conclusion, we developed a method for the identification of disease genes based
on the significance of spatial mutation clustering within a gene. We show that our
method successfully identifies genes previously implicated in ID/DD. Moreover,
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we identified three genes with similar clustering patterns that we propose as
candidate ID/DD genes. Our findings support the concept that these mutations
mostly exert their pathogenic effect through disease mechanisms other than
haploinsufficiency. Thus, our findings might indicate a larger contribution of non-
haploinsufficient mechanisms to ID/DD than previously thought.
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Supporting Information

All supplementary information can be found online with the published article at

https://doi.org/10.1016/j.ajhg.2017.08.004
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Abstract

De novo mutations in protein-coding genes are a well-established cause of
developmental disorders."* However, genes known to be associated with
developmental disorders account for only a minority of the observed excess of
such de novo mutations."*'# Here, to identify previously undescribed genes
associated with developmental disorders, we integrate healthcare and research
exome-sequence data from 31,058 parent-offspring trios of individuals with
developmental disorders, and develop a simulation-based statistical test to
identify gene-specific enrichment of de novo mutations. We identified 285 genes
that were significantly associated with developmental disorders, including 28
that had not previously been robustly associated with developmental disorders.
Although we detected more genes associated with developmental disorders,
much of the excess of de novo mutations in protein-coding genes remains
unaccounted for. Modelling suggests that more than 1,000 genes associated with
developmental disorders have not yet been described, many of which are likely
to be less penetrant than the currently known genes. Research access to clinical
diagnostic datasets will be critical for completing the map of genes associated with
developmental disorders.
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It has previously been estimated that around 42-48% of patients with a severe
developmental disorder (DD) have a pathogenic de novo mutation (DNM) in a
protein-coding gene."*'* However, most of these patients remain undiagnosed
despite the identification of hundreds of DD-associated genes. This indicates that
there are more DD-relevant genes to find. Existing methods to detect the gene-
specific enrichment of damaging DNMs do not incorporate all of the available
information about which variants are more likely to be disease-associated;
missense variants and protein-truncating variants (PTVs) vary in their impact on
protein function.! 214915 Known dominant DD-associated genes are strongly
enriched in the minority of genes that exhibit strong selective constraint on
heterozygous PTVs.®® To identify additional DD-associated genes, we need to
increase our power to detect gene-specific enrichments of damaging DNMs by
both increasing sample sizes and improving our statistical methods. In previous
studies of pathogenic copy number variations, the use of healthcare data has
been key to achieve larger sample sizes than would be possible in a research
setting alone.™152

Identification of 285 DD-associated genes

Following clear consent practices and only using aggregate, deidentified data, we
pooled DNMs from patients with a DD from three centres: GeneDx (a US-based
diagnostic testing company), the Deciphering Developmental Disorders study
and Radboud University Medical Center. We performed stringent quality control
on variants and samples to obtain 45,221 coding and splicing DNMs in 31,058
individuals (Supplementary Fig. 1; Supplementary Table 1), including data
on 24,348 trios that have not previously been published. These DNMs included
40,992 single-nucleotide variants (SNVs) and 4,229 insertions or deletions (indels).
The three cohorts have similar clinical characteristics, male-to-female ratios,
enrichments of DNMs by mutational class and prevalences of known disorders
(Supplementary Fig. 2).

To detect gene-specific enrichments of damaging DNMs, we developed a
method named DeNovoWEST (De Novo Weighted Enrichment Simulation Test,
https://github.com/queenjobo/DeNovoWEST). DeNovoWEST scores all classes
of sequence variants on a unified severity scale based on empirically estimated
positive predictive values of being pathogenic (Supplementary Fig. 3, 4). We
perform two tests per gene: an enrichment test on all nonsynonymous DNMs

95



Chapter 5

and a test designed to detect genes that probably act through an altered-function
mechanism, which combines a missense enrichmenttestwith a missense clustering
test. We then applied a Bonferroni multiple-testing correction accounting for the
number of genes (n = 18,762) and two tests per gene.

We first applied DeNovoWEST to all individuals in our cohort and identified 281
significantly enriched genes, 18 more than when using our previously published
method'"* (Figure 1a; Supplementary Fig. 5). The majority (196 out of 281; 70%) of
the significantly enriched genes already had sufficient evidence of an association
with DDs to be considered of diagnostic utility (as of late 2019) by all three centres,
and we refer to these genes as ‘consensus’ genes. A further 54 out of 281 of the
significantly enriched significant genes were previously considered diagnostic by
one or two centres ('discordant’ genes). Applying DeNovoWEST to synonymous
DNMs, as a negative control analysis, identified no significantly enriched genes
(Supplementary Fig. 6).

To discover novel DD-associated genes with greater power, we applied
DeNovoWEST to DNMs in patients without damaging DNMs in consensus genes
(we refer to this subset as ‘undiagnosed’ patients) and identified 94 significant
genes (Supplementary Fig. 7; Supplementary Table 2), of which 33 were
putative ‘novel’ DD-associated genes. To ensure robustness to potential mutation
rate variation between genes, we determined whether any of the putative novel
DD-associated genes had significantly more synonymous variants in the Genome

»Figure 1: Results of DeNovoWEST analysis. A. Comparison of P values using DeNovoWEST
versus the previous published method (mupit),"'* run on the full cohort. Dashed lines indicate
the threshold for genome-wide significance (one-sided, Bonferroni correction). Point size is
proportional to the number of nonsynonymous DNMs in our cohort. The number of genes that
fall into each quadrant are annotated. B. The number of missense and PTV DNMs in the novel
genes. Point size is proportional to the -log,, (P) value of the analysis of the undiagnosed subset.
Point colour corresponds to which test P value was more significant: blue, the nonsynonymous
enrichment test (pEnrich); red, the missense enrichment and clustering test (pMEC). H3-3A is also
known as H3F3A. C. The distribution of significant P values from analysis of the undiagnosed
subset for discordant and novel genes; P values for consensus genes come from the full cohort
analysis. The number of genes in each P-value bin is coloured by diagnostic gene group (n = 285
significant genes; one-sided Bonferroni-corrected P values). D. The fraction of patients (n = 31,058)
with a nonsynonymous mutation in each diagnostic gene group. Green, the remaining fraction
of patients (the offspring of the parent-offspring trios) expected to have a pathogenic de novo
coding mutation; grey, the fraction of patients that are likely to be explained by other factors. E.
The fraction of patients with a nonsynonymous mutation in each diagnostic gene group split by
sex (n = 13,636 female patients; n = 17,422 male patients). In all panels, black, blue and orange
represents consensus, discordant and novel genes, respectively.
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Aggregation Database (gnomAD)°' of population variation than expected under
our null mutation model. We identified 11 out of 33 genes with a significant excess
of synonymous variants. For these 11 genes, we repeated the DeNovoWEST
test, increasing the null mutation rate by the ratio of observed to expected
synonymous variants in gnomAD. Five of these genes fell below our exome-wide
significance threshold and were removed, leaving 28 novel genes, with a median
of 10 nonsynonymous DNMs (Fig. 1¢; Supplementary Table 3). There were 314
patients with nonsynonymous DNMs in these 28 genes (1.0% of our cohort); all of
these DNMs were inspected in the Integrative Genomics Viewer (IGV)'*3 and, of the
198 patients for which experimental validation was attempted, all variants were
confirmed to be DNMs. The DNMs in these novel genes were distributed randomly
across the three datasets (no genes with P <0.001, heterogeneity test). In addition,
6 of the 28 novel DD-associated genes were corroborated by OMIM entries or
publications, including TFE3, which was described in two recent publications.™415>

We also investigated whether some of the synonymous DNMs might be pathogenic
by disrupting splicing. We identified a small but significant enrichment of
synonymous DNMs with high values of the splicing pathogenicity score SpliceAl'®
(= 0.8, 1.56-fold enriched, P = 0.0037, Poisson test; Supplementary Table 4). This
enrichment corresponds to an excess of around 15 splice-disrupting synonymous
DNMs in our cohort, of which 6 are accounted for by a recurrent synonymous
DNM in KAT6B that is known to disrupt splicing.™’

Taken together, 25.0% of our cohort has a nonsynonymous DNM in one of the
consensus or significant DD-associated genes (Fig. 1d We noted significant sex
differences in the autosomal burden of nonsynonymous DNMs (Supplementary
Fig. 8). The rate of nonsynonymous DNMs in consensus autosomal genes was
significantly higher in female individuals than male individuals (OR=1.16, P=4.4 x
107, Fisher's exact test; Fig. 1e), as noted previously."* However, the exome-wide
burden of autosomal nonsynonymous DNMs in all genes was not significantly
different between undiagnosed male and female participants (OR = 1.03, P = 0.29,
Fisher's exact test). This indicates that there are subtle sex differences in the genetic
architecture of DDs, especially with regard to known and undescribed disorders.
This could include sex-biased contributions of polygenic, oligogenic and/or
environmental modifiers of phenotypic variation and thus clinical ascertainment.
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Characteristics of the novel DD-associated genes

Based on semantic similarity'*® between human phenotype ontology terms,
patients with DNMs in the same novel DD-associated gene were less phenotypically
similar to each other, on average, than patients with DNMs in a consensus gene
(P=2.3x10", Wilcoxon rank-sum test; Fig. 2a and Supplementary Fig. 9). This
suggests that these novel disorders less often result in distinctive and consistent
clinical presentations, which may have made these disorders more difficult to
discover using a phenotype-driven approach. Each of these novel disorders
requires genotype-phenotype characterization, which is beyond the scope of this
study.

Overall, novel DD-associated genesencode proteinsthathaveverysimilarfunctional
and evolutionary properties to consensus genes (Fig. 2b; Supplementary Table
5). Despite the high-level functional similarity between known and novel DD-
associated genes, nonsynonymous DNMs in the more recently described DD-
associated genes are much more likely to be missense DNMs, and less likely to
be PTVs (discordant and novel; P = 1.2 x 10%, chi-squared test). Of the 28 novel
genes, 15 (54%) had only missense DNMs. As a consequence, we expect that the
effects of a greater proportion of the novel genes act through altered-function
mechanisms
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Figure 2: Properties of the novel genes. A. The phenotypic similarity of patients with DNMs in
novel and consensus genes. Random phenotypic similarity was calculated from random pairs of
patients. Patients with DNMs in the same novel gene were less phenotypically similar than patients
with DNMs in the same consensus gene P = 2.3 x 107", Wilcoxon rank-sum test). B. Comparison of
properties of consensus (n = 380) and novel (n = 28) DD-associated genes known to be differential
between consensus and non-DD-associated genes (95% bootstrapped confidence intervals are
shown). GO, Gene Ontology; GERP, genomic evolutionary rate profiling; RPKM, reads per kilobase
of transcript per million mapped reads; CDS, coding sequence; dN/dS, the ratio of substitution rate
at nonsynonymous and synonymous sites.
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(for example, as dominant-negative or gain-of-function disorders). For example,
the novel gene PSMC5 (DeNovoWEST P = 2.6 x 10-15) had one in-frame deletion
and nine missense DNMs, eight of which altered two structurally important amino
acids in the AAA+ ATPase domain; the effect of PSMC5 alterations are therefore
probably generated through an altered-function mechanism (Supplementary Fig.
10 a, b). None of the novel genes exhibited significant clustering of de novo PTVs.

We observed that missense DNMs were more likely to affect functional protein
domains than other coding regions. We observed a 2.63-fold enrichment (P=2.2 x
108, G-test) in missense DNMs that reside in protein domains among consensus
genes and a 1.80-fold enrichment (P = 8.0 x 10, G-test) in novel DD-associated
genes, but no enrichment in synonymous DNMs (Supplementary Table 6).
Four protein domain families in consensus genes were enriched in missense
DNMs (Supplementary Table 7): ion transport protein (PF00520, P = 6.9 x 10
4, Bonferroni-corrected G-test), ligand-gated ion channel (PFO0060, P = 4.0 x 10°
%), and protein kinase domain (PFO0069, P = 0.043) and kinesin motor domain
(PF00225, P = 0.027). Missense DNM s in all four enriched domain families have
previously been associated with DDs (Supplementary Table 8).5%-1¢

We observed a significant overlap between the 285 DNM-enriched DD-associated
genes and a set of 369 previously described cancer-driving genes'®? (overlap of 70
genes; p = 1.7 x 10, logistic regression correcting for selection on heterozygous
PTVs (s,.)) as observed previously,'®'% as well as a significant enrichment in
nonsynonymous DNMs in both overlapping and non-overlapping cancer genes
(SupplementaryTable9). We observe 117 DNMsin 76 recurrentsomatic mutations
that were observed in at least three patients in The Cancer Genome Atlas (TCGA).'%
By modelling the germline mutation rate of these somatic driver mutations, we
found that recurrent nonsynonymous mutations in the TCGA are enriched 21-fold
in our cohort (p < 10°°, Poisson test, Supplementary Fig. 11), whereas recurrent
synonymous mutations in the TCGA are not significantly enriched (2.4-fold, p =
0.13, Poisson test). These results suggest that this observation is driven by the
pleiotropic effects of these mutations in development and tumorigenesis, rather
than because of hypermutability of these variants.
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Recurrent mutations

We identified 773 recurrent DNMs (736 SNVs and 37 indels), observed in 2-36
individuals, which enabled us to systematically interrogate the factors that drive
recurrent germline mutations. We considered three potential contributory factors:
(1) clinical ascertainment that enriches for pathogenic mutations; (2) greater
mutability at specific sites; and (3) positive selection that confers a proliferative
advantage in the male germline.'®® We observed evidence that all three factors
contributed to the occurrence of recurrent germline mutations; however, these
factors are not mutually exclusive. Clinical ascertainment drives the observation
that 65% of recurrent DNMs were in consensus genes, a 5.4-fold enrichment
compared with DNMs that were observed only once (p < 10, proportion test).
Hypermutability underpins the observation that 64% of recurrent de novo SNVs
occurred at hypermutable CpG dinucleotides,'®” a 2.0-fold enrichment over DNMs
that were observed only once (p = 3.3 x 10'%, chi-squared test).

Positive germline selection can increase the apparent mutation rate more
strongly'® than either clinical ascertainment (10-100X in our dataset) or
hypermutability (around 10x for CpGs). However, only a minority of the most
highly recurrent mutations in our dataset are in genes that have been previously
associated with germline selection. Nonetheless, several lines of evidence
suggested that the majority of these most highly recurrent mutations are likely
to confer a germline selective advantage. On the basis of the observations above,
DNMs under germline selection should be more likely to be activating missense
mutations, and should be less enriched for CpG dinucleotides. Extended Data
Table 1 shows the 16 de novo SNVs that were observed 9 or more times in our
cohort, only 2 of which are in known germline selection genes. All but 2 of these
16 de novo SNVs cause missense changes, all but 2 of these genes cause disease
by an altered-function mechanism, and these DNMs were depleted for CpGs
relative to all recurrent mutations. Two of these genes with highly recurrent de
novo SNVs, in SHOC2 and PPP1CB, which encode interacting proteins that regulate
the RAS-MAPK pathway; pathogenic variants in these genes are associated with a
Noonan-like syndrome.'®® Moreover, two of these recurrent DNMs are in the same
gene (SMAD4), which encodes a key component of the TGF( signalling pathway,
potentially expanding the pathophysiology of germline selection beyond the RAS-
MAPK pathway. Confirming germline selection of these mutations will require
deep sequencing analyses of the testes and/or sperm.’®®
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Extended Data Table 1. De novo SNVs with more than nine recurrences in our cohort annotated
with relevant information, such as CpG status, whether the affected gene is a known somatic
driver or germline-selection gene, and diagnostic gene group (for example, consensus). ‘Recur’
refers to the number of recurrences. ‘Likely mechanism’ refers to the mechanisms attributed to
this gene in the published literature.

Somatic ~ Germline

Driver Selection

Symbol Chr  Position Ref Alt C Recur  Likely I CpG  Gene Gene DD status

PACS1 11 65978677 c ;T missense 36 activating Yes - - consensus
PPP2R5SD 6 42975003 G A missense 22 dominant negative - - - consensus
SMAD4 18 48604676 A G missense 21 activating - Yes - consensus
PACS2 14 105834449 G A missense 13 dominant negative Yes - - discordant
MAP2K1 15 66729181 A G missense " activating - Yes Yes consensus
PPP1CB 2 28999810 Cc G missense 1 all missensefin frame - - - consensus
NAA10 X 153197863 G A missense 1" all missense/in frame Yes - = consensus
MECP2 X 153296777 G A stop gain 11 loss of function Yes - - consensus
CSNK2A1 20 472928 T Cc missense 10 activating - - - consensus
CDK13 ¢ 40085606 A G missense 10 all missensefin frame - - = consensus
SHOC2 10 112724120 A G missense 9 activating - - - consensus
PTPN11 12 112915523 A G missense 9 activating - Yes Yes consensus
SMAD4 18 48604664 C T missense 9 activating Yes Yes - consensus
SRCAP 16 30748664 C T stop gain 9 dominant negative Yes - - consensus
FOXP1 3 71021817 C T missense 9 loss of function Yes - - consensus
CTBP1 4 1206816 G A missense 9 dominant negative Yes - - discordant

Incomplete penetrance and pre- or perinatal death

Nonsynonymous DNMsin consensus or significant DD-associated genes accounted
for half of the exome-wide nonsynonymous DNM burden associated with DD (Fig.
1b). Despite our identification of 285 significantly DD-associated genes, there
remains a substantial burden of both missense and protein-truncating DNMs in
unassociated genes (those that are neither significant in our analysis nor on the
consensus gene list). This residual burden of protein-truncating DNMs is greatest
in genes that are intolerant to PTVs in the general population (Supplementary
Fig. 12), which suggests that many haploinsufficient disorders have not yet been
described. We observed that PTV mutability (estimated from a null germline
mutation model) was significantly lower in unassociated genes compared with
DD-associated genes (p = 4.5 x 10% Wilcox rank-sum test; Fig. 3a), which leads
to reduced statistical power to detect DNM enrichment in unassociated genes,
consistent with our hypothesis that numerous haploinsufficient disorders have
not yet been identified.

A key parameter in estimating statistical power to detect novel haploinsufficient
disorders is the fold enrichment of de novo PTVs expected in undescribed
haploinsufficient disorders. We observed that novel DD-associated haploin-
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Figure 3: Factors that influence power to detect DD-associated genes.

A. PTV mutability is significantly lower (p = 4.6 x 10, two-sided Wilcox rank-sum test) in genes
that are not significantly DD-associated (blue) than in DD-associated genes (red). Median is shown
as a black horizontal line. bp, base pairs. B. Distribution of PTV enrichment in significant, likely
haploinsufficient genes by category (118 consensus, 23 discordant and 8 novel genes). Lower
and upper hinges correspond to first and third quartiles. Median is shown by a horizontal grey
line. The upper and lower whiskers extend 1.5x the interquartile range. C. Comparison of PTV
enrichment in our cohort compared with the PTV to synonymous (syn) ratio in gnomAD, for genes
that are significantly PTV-enriched in our cohort (without variant weighting; n = 156 genes). PTV
enrichment bins are calculated as log, (enrichment). The dashed line shows the regression line.
Confidence intervals are the 95% intervals of the rate ratio. d, Overall PTV enrichment across
genes grouped by the likelihood of individuals showing a structural malformation on a prenatal
ultrasound (145 low, 65 medium, 6 high genes). PTV enrichment is significantly higher for genes
with a low likelihood compared to other genes (p = 4.6 x 10, two-sided Poisson test). Poisson 95%
confidence intervals are shown.

sufficient genes had significantly lower PTV enrichment compared with the
consensus haploinsufficient genes (p = 0.005, Wilcoxon rank-sum test; Fig. 3b). Two
additional factors that could lower DNM enrichment, and thus the power to detect
a novel DD association, are reduced penetrance and increased pre- or perinatal
death (due to spontaneous fetal loss, termination of pregnancy because of a fetal
anomaly, stillbirth or early neonatal death). To evaluate incomplete penetrance,
we investigated whether haploinsufficient genes with a lower enrichment of de
novo PTVs in our cohort are associated with a greater prevalence of PTVs in the
general population. We observed a significant negative correlation (p = 0.031,
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weighted linear regression) between PTV enrichment in our cohort and the ratio
of PTV to synonymous variants in gnomAD'#, which suggests that incomplete
penetrance does lower de novo PTV enrichment in our cohort (Fig. 3c).

Additionally, we observed that the fold enrichment of de novo PTVs in consensus
haploinsufficient DD-associated genes in our cohort was significantly higher
for genes with a low likelihood of presenting with a structural malformation of
the fetus during prenatal screening (p = 4.6 x 10%, Poisson test, Fig. 3d), which
indicates that pre- or perinatal death decreases our power to detect some of the
novel disorders (see Supplementary Information for details).

Hundreds of DD genes have not yet been discovered

Downsampling of our cohort and repeating enrichment analyses showed that
the discovery of DD-associated genes has not plateaued (Extended Data Fig.
1a). Increasing the sample size should result in the discovery of many novel DD-
associated genes. To estimate how many haploinsufficient genes have not yet been
described, we modelled the likelihood of the observed distribution of de novo PTVs
among genes as a function of varying numbers of undiscovered haploinsufficient
DD-associated genes and fold enrichments of de novo PTVs in those genes. We
found that the remaining PTV burden is most likely spread across around 1,000
genes with an approximately 10-fold PTV enrichment (Extended Data Fig. 1b).
This fold enrichment is three times lower than in known haploinsufficient DD-
associated genes, which suggests that incomplete penetrance and/or pre- or
perinatal death is more prevalent among undiscovered haploinsufficient genes.
We modelled the missense DNM burden separately and also observed that
the most likely architecture of undiscovered DD-associated genes is one that
comprises more than 1,000 genes with a substantially lower fold enrichment than
in currently known DD-associated genes (Supplemental Fig. 13).

We calculated that a sample size of around 350,000 parent-offspring trios would
be needed to have 80% power to detect a tenfold enrichment of de novo PTVs
for an average gene. Using this inferred tenfold enrichment among undiscovered
haploinsufficient genes, from our current data we can evaluate the likelihood that
any gene i is an undiscovered haploinsufficient gene, by comparing the likelihood
of the number of de novo PTVs observed in each gene to have arisen from the
null mutation rate or from a tenfold increased PTV rate. Among the approximately
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19,000 non-DD-associated genes, around 1,200 were more than three times more
likely to have arisen from a tenfold increased PTV rate, whereas approximately
7,000 were three times more likely to have no de novo PTV enrichment.
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Extended Data Fig. 1 Exploring the remaining number of DD genes.

a, Number of significant genes after downsampling the full cohort and running the enrichment
test of DeNovoWEST. b, The likelihood of the observed distribution of de novo PTV mutations
was modelled. This model varies the numbers of remaining haploinsufficient (HI) DD genes and
PTV enrichment in those remaining genes. The 50% credible interval is shown in red and the
90% credible interval is shown in orange. Note that the median PTV enrichment in genes that
are significant and known to operate through a loss-of-function mechanism (as indicated by an
arrow) is 39.7.

Discussion

Here we describe 28 novel developmental disorders by developing an improved
statistical test for mutation enrichment and applying it to a dataset of exome
sequences from 31,058 parent-offspring trios. Most of the increased power to
detect novel disorders comes from the increase in sample size, rather than the
improved statistical test. These 28 novel genes account for 1.0% of our cohort, and
their inclusion in diagnostic workflows will help to improve diagnosis of similar
patients globally. The value of this study for improving diagnostic yield extends
beyond these 28 novel genes; the total number of genes added to diagnostic
workflows of the three participating centres (including newly validated discordant
genes) ranged from 48 to 65 genes. We show that both incomplete penetrance
and pre- or perinatal death reduced our power to detect novel DDs postnatally,
and hypothesize that one or both of these factors are operating more strongly
among undiscovered DD-associated genes. In addition, we identify a set of highly

105



Chapter 5

recurrent mutations that are strong candidates for novel germline selection
mutations, which should result in a higher than expected disease incidence that
increases markedly with increased paternal age.

Our study is approximately three times larger than a recent meta-analysis of DNMs
from a collection of individuals with autism spectrum disorder, intellectual disability
and/or a developmental disorder.’””® We identified around 2.3 times as many
significantly DD-associated genes as this previous study when using Bonferroni-
corrected exome-wide significance (285 compared with 124). In contrast to meta-
analyses of published DNMs, the harmonized filtering of candidate DNMs across
cohorts in this study should be more robust to cohort-specific differences in the
sensitivity and specificity of detecting DNMs.

We inferred indirectly that developmental disorders with higher rates of
detectable prenatal structural abnormalities had a greater likelihood of pre-
or perinatal death. The potential size of this effect can be quantified from the
recently published PAGE study of genetic diagnoses in a cohort of fetal structural
abnormalities.”' In the PAGE study, genetic diagnoses were not returned to
participants during the pregnancy, and so genetic diagnostic information could
not influence the incidence of pre- or perinatal death. In the PAGE study data,
69% of fetal abnormalities with a genetically diagnosable cause died perinatally
or neonatally. This emphasizes the substantial effect that pre- or perinatal death
can have on reducing the ability to discover novel DDs from postnatal recruitment
alone, and motivates the integration of genetic data from prenatal, neonatal and
postnatal studies in future studies.

To empower our mutation enrichment testing, we estimated positive predictive
values that each DNM was pathogenic on the basis of their predicted protein
consequence, CADD score,? selective constraint against heterozygous PTVs across

the gene (s, _'"?), and, for missense variants, presence in a region under selective

het
missense constraint.! These positive predictive values should also be informative
for variant prioritization in the diagnosis of dominant developmental disorders.
Further work is needed to investigate whether these positive predictive values
could be informative for recessive developmental disorders, and in other types of
dominant disorders. More generally, we hypothesize that empirically estimated
positive predictive values based on variant enrichment in large datasets will be

similarly informative in many other disease areas.
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We adopted a conservative statistical approach to identifying DD-associated
genes. In two previous studies using the same significance threshold, we identified
26 novel DD-associated genes.'®"'* All 26 are now regarded as being diagnostic,
and have entered routine clinical diagnostic practice. Had we used a significance
threshold with a false-discovery rate of <10% as used previously,'”® we would
have identified 770 DD-associated genes. The false-discovery rate of individual
genes depends on the significance of other genes being tested, which means that
it is not appropriate for assessing the significance of individual genes, but can be
useful for defining gene sets. There are 184 consensus genes that did not cross
our significance threshold in this study. It is likely that many of these genes cause
disorders that were underrepresented in our study due to the ease of clinical
diagnosis on the basis of distinctive clinical features or targeted diagnostic testing.
These ascertainment biases will not affect the representation of novel DDs in our
cohort.

Our modelling suggests that there are probably more than 1,000 DD-associated
genes that remain to be discovered, and that reduced penetrance and pre- or
perinatal death will reduce our power to identify these genes using DNM
enrichment. Identifying these genes will require both improved analytical methods
and greater sample sizes. As sample sizes increase, accurate modelling of gene-
specific mutation rates becomes more important. In our analyses of 31,058 trios,
we observed evidence that mutation rate heterogeneity among genes can lead
to overestimation of the statistical significance of mutation enrichment based on
an exome-wide mutation model. We advocate the development of more granular
mutation rate models, based on large-scale population variation resources, that
correct for all technical and biological complexities, to ensure that larger studies
are robust to mutation rate heterogeneity.

We anticipate that the variant-level weights used by DeNovoWEST will improve
over time. As reference population samples, such as gnomAD,'* increase in
size, weights based on selective constraint metrics (for example, s, or regional
missense constraint) will improve. Weights could also incorporate more functional
information, such as expression in disease-relevant tissues. For example, we
observe that DD-associated genes are significantly more likely to be expressed
in the fetal brain (Supplementary Fig. 14). Furthermore, new metrics based on
gene co-regulation networks can predict whether genes function within a disease-
relevant pathway."”* As a cautionary note, including more functional information
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may increase power to detect some new disorders while decreasing power for
disorders with a pathophysiology that is different from known disorders. Our
analyses also suggest that variant-level weights could be further improved by
incorporating other variant prioritization metrics, such as upweighting variants
predicted to affect splicing, variants in particular protein domains or variants that
are somatic driver mutations during tumorigenesis. In developing DeNovoWEST,
we explored the application of both variant-level weights and gene-level weights
in separate stages of the analysis; however, subtle but pervasive correlations
between gene-level metrics (for example, s,) and variant-level metrics (for
example, regional missense constraint or CADD) present statistical challenges
to implementation. Finally, the discovery of less penetrant disorders can be
empowered by analytical methodologies that integrate both DNMs and rare
inherited variants, such as TADA."7”> Nonetheless, using current methods focused
on DNMs alone, we estimated that around 350,000 parent-child trios would need
to be analysed to have around 80% power to detect haploinsufficient genes with
a tenfold PTV enrichment. Discovering non-haploinsufficient disorders will need
even larger sample sizes. Reaching this number of sequenced families will not be
possible for an individual research study or clinical centre; it is therefore essential
that genetic data generated as part of routine diagnostic practice are shared
with the research community such that it can be aggregated to drive discovery of
previously undescribed disorders and improve diagnostic practice.
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Abstract

Variant interpretation remains one of the major challenges in medical genetics.
Previously we showed how genetic variation, when aggregated over homologous
protein domains, help interpret variants of unknown significance. Here, we
created the Meta-Domain HotSpot (MDHS) p-value to identify mutation hotspots
in homologous domains. The MDHS p-value was used to identify hotspots of de
novo mutations (DNMs) in a dataset of 45,221 DNMs from 31,058 patients with
developmental disorders (DDs). Of these, 15,392 DNMs locate to evolutionary
equivalent positions in protein domain regions across 6,910 genes.The MDHS
p-value identified three missense DNM hotspots, and no hotspots for synonymous
or nonsense DNMs. All missense DNM hotspots are in the ion transport protein
domain family (PF00520). The 57 missense DNMs driving enrichment result from
25 genes, of which 19 were previously associated to DDs. Function altering disease-
mechanisms have been described for some of the DNMs at these hotspots in
literature. 3D Protein structure modelling of the 25 genes consistently confirmed
the same function of the native residues at each of these hotspots. One hotspot
is located at the ion channel gate and the other two at voltage-sensing positions
critical for the in/activation of the ion channel. Therefore all DNMs at these
hotspots are function-altering and likely pathogenic. Six genes (CACNATB, TPCNT,
TPCN2, KCNH5, KCNG1, and TRPM5) are now suggested as new candidate genes for
DD based on DNMs at these hotspots. In conclusion, we show a novel approach to
identify candidate disease genes based on homologous protein domain mutation
hotspots.
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Introduction

De novo mutations (DNMs) in protein-coding genes are an established cause for
developmental disorders (DDs).””® An estimated 2-5% of all children are born
with severe DDs in the form of congenital malformations or neurodevelopmental
disorders.'77'78 Of these, ~42-48% are caused by a DNM in a protein-coding
gene.""*1%8 On average, any individual has about 1-2 DNMs in protein-coding
regions.> Statistical models use this to identify DNM enrichment in patient
cohorts that point to candidate disease-causing genes. These efforts have
resulted in a growing number of genes that are now associated with DD, and has
led to the publication of a growing collection of DNMs from patient cohorts with
DDs.109114120128179 Nevertheless, DD-association of genes has far from saturated
and over 1,000 DD-associated genes are expected to await discovery."”® To
continue DD-association this way, larger and larger cohorts are required

The largest cohort of 31,058 patients with DDs was recently published in a study
by Kaplanis et al. This enabled novel DD-association for 28 genes. Remarkably, 15
of these genes were enriched by missense mutations only, suggesting that these
genes may not act through a classical mechanism of haploinsufficiency. This could
partly explain the difficulties in identifying novel DD genes, since the decreased
mutational target would give rise to fewer patients with mutations in these genes,
than would be expected if these genes were to act through haploinsufficiency.
Non-haploinsufficient DD genes can be identified by mutation clustering patterns
in particular gene regions.''* However, DNMs are rare and therefore these
methods require large sample sizes to be successful.

Protein domain regions are of particular interest, because ~71% of curated
disease-causing missense variants in Human Gene Mutation Database (HGMD)*'
and ClinVar® occur in protein domains.®® DD-associated missense DNMs are up
to a 2.63 fold more likely to be found in these regions.’” It has been shown that
the evolutionary conserved architecture underlying homologous protein domains
can be used to aggregate genetic variation across the human genomet0.93180-183
Disease-causing missense variants aggregated to equivalent protein domain
positions are depleted of population-based variation and vice versa.” In addition,
disease-causing missense variants on identical homologous protein domain
positions, modelled in yeast, result in similar disease-phenotypic changes.'®'
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We developed a novel methodology to perform mutation clustering of DNMs
across homologous protein domains. By aggregating across homologs we increase
the statistical power to identify mutation clusters. Using this method on DNMs
from 31,058 patients with DDs and suggest novel disease gene candidates.

Materials and Methods

Dataset of de novo mutations and developmental disorder diagnostic
gene lists

We obtained all 45,221 DNMs from the Kaplanis et a/ study."”® These DNMs
were identified in 31,058 patients with DDs from three centres. The genetic
testing approach of these patients were described previously per centre: DDD,'*
GeneDX,' and, Radboudumc.’?® All individuals that underwent genetic testing
provided informed consent.'® Subset of these patients have been analysed and
reported in previous publications.”0"1418418 We also make use of the diagnostic
lists of DD-associated genes from the Kaplanis et al. study, namely the novel
(n=28), consensus (n=380) and discordant (n=607) diagnostic gene lists."”®

Annotation of transcript details, protein and meta-domain position
annotation

The DNMs were annotated with corresponding GENCODE®® transcripts from
release 19 GRCh37.p13 Basic set, protein information from UniProtkKB/Swiss-Prot®*
Release 2016_09, Pfam-A*' v30.0 protein domains information, and meta-domain®?
positions using a local version of the MetaDome® web server (code available
at https://github.com/cmbi/metadome). Meta-domains are based on multiple

sequence alignments of parts of human protein-coding genes that correspond
to Pfam protein domain families. The genetic variants which correspond to
homologous protein domain positions receive additional annotation of the
corresponding Pfam domain ID and consensus position.

Filtering the annotated DNMs

The annotation process can result in multiple GENCODE gene transcripts per
DNM. To ensure a single GENCODE transcript per gene we performed a filtering
step by the following order of criteria:
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1. Only keep variants that have the following transcript consequence:
missense, synonymous, or, stop-gained

2. The transcript corresponds to a human canonical or isoform entry in
Swiss-Prot

3. This transcript contains all (or most) of the de novo mutations for the
corresponding gene

4. The transcript translates to the longest protein sequence length
5. If multiple transcripts remain for a gene, one of these is selected

6. Filter variants only to those that are in a Pfam protein domain

Detection of variant hotspots in homologous protein domains

The Pfam domain ID in combination with the consensus position allows for
aggregation of variants. Using these aggregated variants, we can identify which
of the meta-domain positions are significantly enriched with variants. For this
purpose we created the MDHS (Meta-Domain HotSpot) p-value to identify
mutational hotspots in homologous protein domains defined as follows:

MDHS p-value = Pr (x < k; Bin (n, %)) (1.
In the context of meta-domains, n corresponds to the total number of aggregated
genetic variants for the Pfam domain ID, L is the total number of possible
consensus positions for a Pfam domain ID, k is the total number of genetic
variants aggregated at a single consensus position, and, x = k - 1, which depicts the
chance of finding less then observed genetic variants at the consensus position.
The MDHS p-value is adapted from the mCluster' and DS-Score'®®. In line with
these methods, variants are assumed to follow a Binomial distribution. We correct
the MDHS p-value via the Bonferroni method for the total number of Pfam protein
domain IDs considered. If a Bonferroni corrected MDHS p-value <0.05 we consider
it as a significant mutational hotspot.

We consider two ways of counting genetic variants to represent variable k in the
MDHS p-value (Equation 1): an ‘unrestricted mutation count’ and a ‘restricted
mutation count’ (Figure 1). The unrestricted mutation count would include every
DNM, even when multiple DNMs occur at exactly the same chromosomal position

115




Chapter 6

(i.e. recurrent DNMs). The restricted count considers mutated chromosomal
positions only once, thereby reducing the impact of recurrent mutations at a
single position in a gene.

Gene A D Domain A
® ® ® ® ®

Gene B Domain B
® ®

Gene C Domain C

Unrestricted Mutation count 2 2 4

Restricted Mutation count 2 1 3

Figure 1. Graphical example of the two ways we count mutations that are aggregated over
homologous protein domain regions. On the left there are three protein representations of
hypothetical genes A, B and C with the mutations displayed as red lollipops, the domains as blue
and white boxes. The white boxes represent domains that are homologous and are extracted
including their mutations and displayed on the right part of this image as domains A, B, and
C. The mutations encountered in the domains are aggregated over corresponding homologous
domain positions. The aggregated mutations are displayed as ‘unrestricted mutation count,
which includes all observed mutations. The ‘restricted mutation count’ counts uniquely occurring
mutation per position.

Protein 3D structural modelling

We have created structural homology models using YASARA & WHAT IF Twinset'+'47
of the lon Transport protein domain regions for each of the 25 genes in which a
DNM missense was located at the identified DNM missense hotspot. The locations
of each missense DNM present at one of the hotspots have been coloured purple
in the YASARA scenes and the remainder of the structures are grey (Supp. Data
S1).
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Results

To identify hotspots of de novo mutations in protein domains, we count DNMs in
a manner that reduces any mutational gene-bias (Figure 1), which then can be
used to compute protein domain based positional enrichment (Equation 1) for
each de novo variant type separately. We first mapped the original 45,221 DNMs
resulting from 31,058 patients with developmental disorders from the Kaplanis
et al.'”® study onto gene transcripts (Methods). After this mapping, of the original
DNMs 37,089 single nucleotide variants remained of which 15,322 are located on a
total of 12,389 meta-domain positions. These 15,322 DNMs resulted from protein
domain regions of 6,910 protein-coding genes, and these protein domain regions
consist of 2,311 protein domain families. The distribution of variant types of these
15,322 DNMs are ~73.7% missense, ~21.1% synonymous, and, ~5.3% stop-gained
(Supp. Data S2; Supp. Table 1).

Using all 15,322 DNMs in protein domains the MDHS p-value identified 32
significant hotspots. These hotspots were enriched by 326 missense DNMs from
16 protein domain families (Supp. Data S3). There were no synonymous or
nonsense DNMs driving significant enrichment (Supp. Data S4 & S5). Upon close
examination, we found 9 of these hotspots to be enriched due to a large numbers
of DNMs located in a single gene codon. Meaning that gene-specific DNM burdens
are be picked up via the MDHS method. To reduce the gene-specific DNM burden,
we further filtered the 32 hotspots with the criteria that the DNMs driving their
enrichment should span at least two different gene-codons. After this filtering,
there remain 23 missense DNM hotspots in 12 protein domain families based on
245 DNMs from 67 genes. Nineteen of these 67 genes were not associated to
DDs in the Kaplanis et al. study, representing a 2.53-fold enrichment of known
DD-associated genes (p = 1.263" chi-square test; Supp Table 2). This suggests that
our approach could potentially point to new candidate DD genes. However, as this
analysis picked up gene-specific DNM burdens, we cannot attribute the DNMs that
drive hotspot enrichment as purely domain-specific.

We repeated the hotspot discover analysis with a more restricted way of
counting the DNMs to reduce gene-specific enrichment patterns being picked up
(Figure 1). In this restricted counting analysis, the MDHS p-value identifies three
significant hotspots comprised of 57 missense DNMs from 25 genes (Supp Data
$6). Strikingly, all three hotspots are located in the lon Transport protein domain
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family (PF00520) (Figure 2). Again there are no hotspots revealed for synonymous
and nonsense DNMs. The three significant hotspots are located on the domain
consensus positions p.96 (10 DNMs, restricted MDHS p = 3.6 x 102, 16 DNMs
unrestricted MDHS p= 1.7 x 10°%), p.102 (13 DNMs, restricted MDHS p = 7.1 x 10
5, 20 DNMs, unrestricted MDHS p= 1.6 x 1079, and p.231 (14 DNMs, restricted
MDHS p = 8.0 x 10, 21 DNMs, unrestricted MDHS p= 1.4 x 10""). The fact that all
hotspots occur within the same domain family strengthens the hypothesis that
these positions are likely of functional importance. The lon Transport protein
domain family is one of four protein domain families that we previously found
to be significantly enriched with missense DNMs in genes that are associated to
DDs."” Of the 25 genes identified with a missense DNM at a hotspot, 19 were
listed as diagnostic DD-associated gene in Kaplanis et al. representing a 3.17-fold
enrichment of known DD-associated genes (p = 1.78 x 103 chi-square test; Supp
Table S3).

Hotspot p.231
Hotspot p.102
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Figure 2. The restricted count distribution of missense DNMs aggregated over the lon Transport
protein domain fa